Expander Technologies for Automotive Engine Organic Rankine Cycle Applications
Abstract
:1. Introduction
1.1. Organic Rankine Cycle (ORC) Technology
1.2. Configurations of Rankine Cycles
1.3. ORC in Internal Combustion Engines
1.4. Working Fluids in ORC
1.5. Comparison between ORC System and Other Technologies (Thermo-Electric Generation and Turbo-Compounding)
2. Expander Technologies for ORCs in Internal Combustion Engines (ICEs)
2.1. Positive Displacement Expanders (PDEs)
2.1.1. Brief History of Positive Displacement Expanders in Organic Rankine Cycle-Internal Combustion Engine
Scroll Expanders
Screw Expanders
Piston Expanders
Rotary Vane Expanders
2.1.2. Performance of Positive Displacement Expanders
2.2. Turbo-Expanders
2.2.1. Brief History of Turbo-Expanders in ORC-ICEs
Axial Turbines
Radial Turbines
2.2.2. Performance of Turbo-Expanders
3. Selection of an Optimum Expansion Machine
4. Cost Estimation of Expansion Machines
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- International Council on Clean Transportation (ICCT). European Vehicle Market Statistics; ICCT: Washington, DC, USA, 2016. [Google Scholar]
- Johnson, T.V. Review of Vehicular Emissions Trends. SAE Int. J. Engines 2015, 8, 1152–1167. [Google Scholar] [CrossRef]
- Johnson, T.V. Diesel Emissions in Review. SAE Int. J. Engines 2011, 4, 143–157. [Google Scholar] [CrossRef]
- Torrey, W.; Murray, D. An Analysis of the Operational Costs of Trucking: A 2014 Update; American Transportation Research Institute: Atlanta, GA, USA, 2014. [Google Scholar]
- Marchionni, M.; Bianchi, G.; Karvountzis-Kontakiotis, A.; Pesiridis, A.; Tassou, S.A. Dynamic modeling and optimization of an ORC unit equipped with plate heat exchangers and turbomachines. Energy Procedia 2017, 129, 224–231. [Google Scholar] [CrossRef]
- Arsie, I.; Cricchio, A.; Marano, V.; Pianese, C.; De Cesare, M.; Nesci, W. Modeling Analysis of Waste Heat Recovery via Thermo Electric Generators for Fuel Economy Improvement and CO2 Reduction in Small Diesel Engines. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2014, 7, 246–255. [Google Scholar] [CrossRef]
- Sprouse, C.; Depcik, C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 2013, 51, 711–722. [Google Scholar] [CrossRef]
- Tian, H.; Shu, G.; Wei, H.; Liang, X.; Liu, L. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE). Energy 2012, 47, 125–136. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Peng, Z.; Shu, G. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew. Sustain. Energy Rev. 2011, 15, 2862–2871. [Google Scholar] [CrossRef]
- Agudelo, A.F.; García-Contreras, R.; Agudelo, J.R.; Armas, O. Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle. Appl. Energy 2016, 174, 201–212. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Kim, S.; Rhi, S.-H. A Thermoelectric Generator Using Engine Coolant for Light-Duty Internal Combustion Engine-Powered Vehicles. J. Electron. Mater. 2011, 40, 812. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Feng, R.; Yang, Y.; Wang, L.; Wang, Y. Energy and exergy analysis on gasoline engine based on mapping characteristics experiment. Appl. Energy 2013, 102, 622–630. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Waste Heat Recovery: Technology and Opportunities in U.S. Industry; U.S. Department of Energy Industrial Technologies Program: Washington, DC, USA, 2008.
- Dolz, V.; Novella, R.; García, A.; Sánchez, J. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Appl. Therm. Eng. 2012, 36, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Nadaf, S.L.; Gangavati, P.B. A review on Waste Heat Recovery and Utilization from Diesel Engines. Int. J. Adv. Eng. Technol. 2014, 31, 39–45. [Google Scholar]
- Talbi, M.; Agnew, B. Energy recovery from diesel engine exhaust gases for performance enhancement and air conditioning. Appl. Therm. Eng. 2002, 22, 693–702. [Google Scholar] [CrossRef]
- Teng, H.; Regner, G. Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Rejection. In Proceedings of the SAE 2009 Commercial Vehicle Engineering Congress & Exhibition, Detroit, MI, USA, 20–23 April 2009; SAE International: Warrendale, PA, USA, 2009. [Google Scholar]
- Teng, H.; Regner, G.; Cowland, C. Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part I: Hybrid Energy System of Diesel and Rankine Engines. In Proceedings of the SAE World Congress & Exhibition, Detroit, MI, USA, 16–19 April 2007; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Espinosa, N.; Tilman, L.; Lemort, V.; Quoilin, S.; Lombard, B. Rankine Cycle for Waste Heat Recovery on Commercial Trucks: Approach, Constraints and Modelling. In Proceedings of the Diesel International Conference and Exhibition, Rouen, France, 26–27 May 2010. [Google Scholar]
- Boretti, A. Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine. Appl. Therm. Eng. 2012, 36, 73–77. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Zhang, J.; Shu, G.; Peng, Z. Analysis of recoverable exhaust energy from a light-duty gasoline engine. Appl. Therm. Eng. 2013, 53, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Cipollone, R.; Bianchi, G.; Gualtieri, A.; Di Battista, D.; Mauriello, M.; Fatigati, F. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines. J. Phys. Conf. Ser. 2015, 655, 012015. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Zhang, H.; Song, S.; Zhang, J.; Wu, Y.; Zhang, Y.; Wang, H.; Chang, Y.; Bei, C. Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander. Energies 2014, 7, 3400–3419. [Google Scholar] [CrossRef] [Green Version]
- Katsanos, C.O.; Hountalas, D.T.; Pariotis, E.G. Thermodynamic analysis of a Rankine cycle applied on a diesel truck engine using steam and organic medium. Energy Convers. Manag. 2012, 60, 68–76. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhang, H.G.; Zhao, Y.; Fan, B.Y.; Wu, Y.T.; Mu, Q.H. Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine. Energy 2012, 43, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L.; Haller, R.; Nicolas, B.; Glavatskaya, Y. Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander. Energy Convers. Manag. 2015, 103, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Panesar, A.S. Waste Heat Recovery Using Fluid Bottoming Cycles for Heavy Duty Diesel Engines. Ph.D. Thesis, University of Brighton, Brighton, UK, 2015. [Google Scholar]
- Song, P.; Wei, M.; Shi, L.; Danish, S.N.; Ma, C. A review of scroll expanders for organic Rankine cycle systems. Appl. Therm. Eng. 2014, 75, 54–64. [Google Scholar] [CrossRef]
- Bao, J.; Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sustain. Energy Rev. 2013, 24, 325–342. [Google Scholar] [CrossRef]
- Saidur, R.; Rezaei, M.; Muzammil, W.K.; Hassan, M.H.; Paria, S.; Hasanuzzaman, M. Technologies to recover exhaust heat from internal combustion engines. Renew. Sustain. Energy Rev. 2012, 16, 5649–5659. [Google Scholar] [CrossRef]
- Karvonen, M.; Kapoor, R.; Uusitalo, A.; Ojanen, V. Technology competition in the internal combustion engine waste heat recovery: A patent landscape analysis. J. Clean. Prod. 2016, 112, 3735–3743. [Google Scholar] [CrossRef]
- Weerasinghe, W.M.S.R.; Stobart, R.K.; Hounsham, S.M. Thermal efficiency improvement in high output diesel engines a comparison of a Rankine cycle with turbo-compounding. Appl. Therm. Eng. 2010, 30, 2253–2256. [Google Scholar] [CrossRef] [Green Version]
- Galindo, J.; Guardiola, C.; Dolz, V.; Kleut, P. Further analysis of a compression-expansion machine for a Brayton Waste Heat Recovery cycle on an IC engine. Appl. Therm. Eng. 2018, 128, 345–356. [Google Scholar] [CrossRef]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Aghaali, H.; Ångström, H.-E. A review of turbocompounding as a waste heat recovery system for internal combustion engines. Renew. Sustain. Energy Rev. 2015, 49, 813–824. [Google Scholar] [CrossRef]
- Quoilin, S.; Lemort, V.; Lebrun, J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Appl. Energy 2010, 87, 1260–1268. [Google Scholar] [CrossRef]
- Schuster, A.; Karellas, S.; Kakaras, E.; Spliethoff, H. Energetic and economic investigation of Organic Rankine Cycle applications. Appl. Therm. Eng. 2009, 29, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Yunus, A.C.; Boles, M.A. Thermodynamics: An Engineering Approach, Section: 10.5, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]
- Brandsar, J. Offshore Rankine Cycles. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2012. [Google Scholar]
- Still, W.J. International Combustion Engine. England Patent 1,230,617, 19 June 1917. [Google Scholar]
- Legros, A.; Guillaume, L.; Lemort, V.; Diny, M.; Bell, I.; Quoilin, S. Investigation on a scroll expander for waste heat recovery on internal combustion engines. In Proceedings of the International Conference on Compressors and Their Systems, London, UK, 9–10 September 2013; Volume 1, p. 10. [Google Scholar]
- Reay, D.A. Heat Recovery Systems: A Directory of Equipment and Techniques; E. & F. N. Spon: London, UK, 1979. [Google Scholar]
- Patel, P.; Doyle, E. Compounding the Truck Diesel Engine with an Organic Rankine-Cycle System; SAE Technical Paper 760343; SAE International: Warrendale, PA, USA, 1976. [Google Scholar]
- Erba, M.; Biyikoglu, A. Design of Low Temperature Organic Rankine Cycle and Turbine. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 1065–1070. [Google Scholar] [CrossRef]
- Endo, T.; Kawajiri, S.; Kojima, Y.; Takahashi, K.; Baba, T.; Ibaraki, S.; Takahashi, T.; Shinohara, M. Study on Maximizing Exergy in Automotive Engines; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Damon, K.; Koeberlein, D. Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks. 2013; pp. 1–21. Available online: https://energy.gov (accessed on 18 July 2018).
- Quoilin, S. Experimental Study and Modeling of a Low Temperature Rankine Cycle for Small Scale Cogeneration. Ph.D. Thesis, University of Liege, Liege, Belgium, 2007. [Google Scholar]
- Ringler, J.; Seifert, M.; Guyotot, V.; Hübner, W. Rankine cycle for waste heat recovery of IC engines. SAE Int. J. Engines 2009, 2, 67–76. [Google Scholar] [CrossRef]
- Karvountzis-Kontakiotis, A.; Pesiridis, A.; Zhao, H.; Alshammari, F.; Franchetti, B.; Pesmazoglou, I.; Tocci, L. Effect of an ORC Waste Heat Recovery System on Diesel Engine Fuel Economy for Off-Highway Vehicles; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Imran, M.; Usman, M.; Park, B.-S.; Lee, D.-H. Volumetric expanders for low grade heat and waste heat recovery applications. Renew. Sustain. Energy Rev. 2016, 57, 1090–1109. [Google Scholar] [CrossRef]
- Oh, Y.; Park, J.; Lee, J.; Do Eom, M.; Park, S. Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics. Transp. Res. Part D Transp. Environ. 2014, 32, 287–302. [Google Scholar] [CrossRef]
- Di Battista, D.; Mauriello, M.; Cipollone, R. Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle. Appl. Energy 2015, 152, 109–120. [Google Scholar] [CrossRef]
- Horst, T.A.; Tegethoff, W.; Eilts, P.; Koehler, J. Prediction of dynamic Rankine Cycle waste heat recovery performance and fuel saving potential in passenger car applications considering interactions with vehicles’ energy management. Energy Convers. Manag. 2014, 78, 438–451. [Google Scholar] [CrossRef]
- Boretti, A. Stoichiometric H2ICE with water injection and exhaust and coolant heat recovery through organic Rankine cycles. Int. J. Hydrogen Energy 2011, 36, 12591–12600. [Google Scholar] [CrossRef]
- Boretti, A.A. Energy Recovery in Passenger Cars. J. Energy Resour. Technol. 2012, 134, 022203. [Google Scholar] [CrossRef]
- Franchetti, B.; Pesiridis, A.; Pesmazoglou, I.; Sciubba, E.; Tocci, L. Thermodynamic and technical criteria for the optimal selection of the working fluid in a mini-ORC. In Proceedings of the ECOS 2016—The 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Postoroz, Slovenia, 19–23 June 2016. [Google Scholar]
- Roy, J.P.; Mishra, M.K.; Misra, A. Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions. Appl. Energy 2011, 88, 2995–3004. [Google Scholar] [CrossRef]
- Lee, M.J.; Tien, D.L.; Shao, C.T. Thermophysical capability of ozone-safe working fluids for an organic rankine cycle system. Heat Recovery Syst. CHP 1993, 13, 409–418. [Google Scholar] [CrossRef]
- Rahbar, K.; Mahmoud, S.; Al-Dadah, R.K.; Moazami, N. Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine. Energy Convers. Manag. 2015, 91, 186–198. [Google Scholar] [CrossRef]
- Hung, T.C.; Shai, T.Y.; Wang, S.K. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 1997, 22, 661–667. [Google Scholar] [CrossRef]
- Quoilin, S. Sustainable Energy Conversion Through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar Applications. Ph.D. Thesis, University of Liege, Liege, Belgium, 2011. [Google Scholar]
- Borsukiewiczgozdur, A.; Nowak, W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius–Rankine cycle. Energy 2007, 32, 344–352. [Google Scholar] [CrossRef]
- Dong, B.; Xu, G.; Li, T.; Luo, X.; Quan, Y. Parametric analysis of organic Rankine cycle based on a radial turbine for low-grade waste heat recovery. Appl. Therm. Eng. 2017, 126, 470–479. [Google Scholar] [CrossRef]
- Nouman, J. Comparative Studies and Analyses of Working Fluids for Organic Rankine Cycles—ORC. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2012. [Google Scholar]
- Liu, B.T.; Chien, K.H.; Wang, C.C. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004, 29, 1207–1217. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Liu, J.; Lin, Z.; Ye, J.; Gao, M.; Shen, Y. Nominal condensing capacity and performance evaluation of evaporative condenser. Appl. Therm. Eng. 2016, 107, 79–85. [Google Scholar] [CrossRef]
- Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [Google Scholar] [CrossRef]
- Hung, T.C.; Wang, S.K.; Kuo, C.H.; Pei, B.S.; Tsai, K.F. A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy 2010, 35, 1403–1411. [Google Scholar] [CrossRef]
- Hung, T.-C. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers. Manag. 2001, 42, 539–553. [Google Scholar] [CrossRef]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406–3418. [Google Scholar] [CrossRef] [Green Version]
- Shu, G.; Li, X.; Tian, H.; Liang, X.; Wei, H.; Wang, X. Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Appl. Energy 2014, 119, 204–217. [Google Scholar] [CrossRef]
- Javanshir, A.; Sarunac, N.; Razzaghpanah, Z. Thermodynamic analysis of a regenerative organic Rankine cycle using dry fluids. Appl. Therm. Eng. 2017, 123, 852–864. [Google Scholar] [CrossRef]
- Dai, X.; Shi, L.; An, Q.; Qian, W. Thermal stability of some hydrofluorocarbons as supercritical ORCs working fluids. Appl. Therm. Eng. 2018, 128, 1095–1101. [Google Scholar] [CrossRef]
- Invernizzi, C.M.; Iora, P.; Manzolini, G.; Lasala, S. Thermal stability of n-pentane, cyclo-pentane and toluene as working fluids in organic Rankine engines. Appl. Therm. Eng. 2017, 121, 172–179. [Google Scholar] [CrossRef]
- Saloux, E.; Sorin, M.; Nesreddine, H.; Teyssedou, A. Reconstruction procedure of the thermodynamic cycle of organic Rankine cycles (ORC) and selection of the most appropriate working fluid. Appl. Therm. Eng. 2018, 129, 628–635. [Google Scholar] [CrossRef]
- He, S.; Chang, H.; Zhang, X.; Shu, S.; Duan, C. Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine. Appl. Therm. Eng. 2015, 90, 579–589. [Google Scholar] [CrossRef]
- Seyedkavoosi, S.; Javan, S.; Kota, K. Exergy-based optimization of an organic Rankine cycle (ORC) for waste heat recovery from an internal combustion engine (ICE). Appl. Therm. Eng. 2017, 126, 447–457. [Google Scholar] [CrossRef]
- Astolfi, M. Technical options for organic Rankine cycle systems. In Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications; Elsevier Science & Technology: New York, NY, USA, 2016; pp. 67–89. [Google Scholar]
- Yang, K.; Zhang, H.; Wang, Z.; Zhang, J.; Yang, F.; Wang, E.; Yao, B. Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions. Energy 2013, 58, 494–510. [Google Scholar] [CrossRef]
- Wei, D.; Lu, X.; Lu, Z.; Gu, J. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Convers. Manag. 2007, 48, 1113–1119. [Google Scholar] [CrossRef]
- Hountalas, D.; Mavropoulos, G. Potential for Improving HD Diesel Truck Engine Fuel Consumption Using Exhaust Heat Recovery Techniques. In New Trends in Technologies: Devices, Computer, Communication and Industrial Systems; InTech: Vienna, Austria, 2010; Volume 2, pp. 313–340. [Google Scholar]
- Arnaud, L.; Ludovic, G.; Mouad, D.; Hamid, Z.; Vincent, L. Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle. Energies 2014, 7, 5273–5290. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Q.; Birgham, D. Organic Rankine cycle for light duty passenger vehicles. In Proceedings of the Directions in Engine-Efficiency and Emissions Research (DEER) Conference, Detroit, MI, USA, 3–6 October 2011. [Google Scholar]
- Mahmoudzadeh Andwari, A.; Pesiridis, A.; Esfahanian, V.; Salavati-Zadeh, A.; Karvountzis-Kontakiotis, A.; Muralidharan, V. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine. Energies 2017, 10, 1087. [Google Scholar] [CrossRef]
- Bin Mamat, A.M.I.; bin Wan Mohamed, W.A.N. Thermal Analysis of Heat Recovery Unit to Recover Exhaust Energy for Using in Organic Rankine Cycle. Appl. Mech. Mater. 2013, 393, 781–786. [Google Scholar] [CrossRef]
- Pesiridis, A. Automotive Exhaust Emissions and Energy Recovery; NOVA: Hauppauge, NY, USA, 2014. [Google Scholar]
- Larjola, J. Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC). Int. J. Prod. Econ. 1995, 41, 227–235. [Google Scholar] [CrossRef]
- Crane, D.T.; Jackson, G.S. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery. Energy Convers. Manag. 2004, 45, 1565–1582. [Google Scholar] [CrossRef]
- Hsu, C.-T.; Huang, G.-Y.; Chu, H.-S.; Yu, B.; Yao, D.-J. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Appl. Energy 2011, 88, 1291–1297. [Google Scholar] [CrossRef]
- Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M. A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renew. Sustain. Energy Rev. 2014, 37, 168–181. [Google Scholar] [CrossRef]
- Zhang, X.; Chau, K.T. An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking. Energy Convers. Manag. 2011, 52, 641–647. [Google Scholar] [CrossRef]
- Yu, C.; Chau, K.T. Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Convers. Manag. 2009, 50, 1506–1512. [Google Scholar] [CrossRef]
- Mamat, B.; Ihsan, A.M. Design and Development of a High Performance LPT for Electric Turbocompounding Energy Recovery Unit in a Heavily Downsized Engine. Ph.D. Thesis, Department of Mechanical Engineering, Imperial College London, London, UK, 2012. [Google Scholar]
- Liu, W.; Jie, Q.; Kim, H.S.; Ren, Z. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 2015, 87, 357–376. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wang, X.; Shu, G.; Wei, H.; Tian, H.; Wang, X. A review and selection of engine waste heat recovery technologies using analytic hierarchy process and grey relational analysis. Int. J. Energy Res. 2015, 39, 453–471. [Google Scholar] [CrossRef]
- Qiu, G.; Liu, H.; Riffat, S. Expanders for micro-CHP systems with organic Rankine cycle. Appl. Therm. Eng. 2011, 31, 3301–3307. [Google Scholar] [CrossRef] [Green Version]
- Capata, R.; Hernandez, G. Proposal Design Procedure and Preliminary Simulation of Turbo Expander for Small Size (2–10 kW) Organic Rankine Cycle (ORC). In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014; Volume 6. [Google Scholar]
- Teng, H.; Klaver, J.; Park, T.; Hunter, G.L.; van der Velde, B. A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines—WHR System Development; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2011; Volume 1, pp. 1–11. [Google Scholar]
- Garg, P.; Karthik, G.M.; Kumar, P. Development of a generic tool to design scroll expanders for {ORC} applications. Appl. Therm. Eng. 2016, 109, 878–888. [Google Scholar] [CrossRef]
- Papes, I.; Degroote, J.; Vierendeels, J. Development of a thermodynamic low order model for a twin screw expander with emphasis on pulsations in the inlet pipe. Appl. Therm. Eng. 2016, 103, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Li, M.; Ma, Y.; Liu, Z.; Zhang, Z. Simulation analysis of a two-rolling piston expander replacing a throttling valve in a refrigeration and heat pump system. Appl. Therm. Eng. 2014, 66, 383–394. [Google Scholar] [CrossRef]
- Yang, B.; Peng, X.; He, Z.; Guo, B.; Xing, Z. Experimental investigation on the internal working process of a CO2 rotary vane expander. Appl. Therm. Eng. 2009, 29, 2289–2296. [Google Scholar] [CrossRef]
- Austin, D. Reid Low Temperature Power Generation Using HFE-7000 in a Rankine Cycle. Master’s Thesis, San Diego State University, San Diego, CA, USA, 2012. [Google Scholar]
- Quoilin, S.; Van Den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-economic survey of organic rankine cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef]
- Zhao, L.; Li, M.; Liu, Z. Simulation analysis of a two rolling piston expander replacing throttling valve in conventional refrigerant heat pump system. In Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 16–19 July 2012. Paper 2100. [Google Scholar]
- Badami, M.; Mura, M. Preliminary design and controlling strategies of a small-scale wood waste Rankine Cycle (RC) with a reciprocating steam engine (SE). Energy 2009, 34, 1315–1324. [Google Scholar] [CrossRef]
- Paltrinieri, N. A Mean-Line Model to Predict the Deaign Performance of Radial Inflow Turbines in Organic Rankine Cycles. Master’s Thesis, University of Padua, Padua, Italy, 2014. [Google Scholar]
- Badr, O.; Naik, S.; O’Callaghan, P.W.; Probert, S.D. Expansion machine for a low power-output steam Rankine-cycle engine. Appl. Energy 1991, 39, 93–116. [Google Scholar] [CrossRef]
- Badr, O.; Naik, S.; O’Callaghan, P.W.; Probert, S.D. Rotary Wankel engines as expansion devices in steam Rankine-cycle engines. Appl. Energy 1991, 39, 59–76. [Google Scholar] [CrossRef]
- Antonelli, M.; Baccioli, A.; Francesconi, M.; Desideri, U.; Martorano, L. Operating maps of a rotary engine used as an expander for micro-generation with various working fluids. Appl. Energy 2014, 113, 742–750. [Google Scholar] [CrossRef]
- Badr, O.; O’Callaghan, P.W.; Hussein, M.; Probert, S.D. Multi-vane expanders as prime movers for low-grade energy organic Rankine-cycle engines. Appl. Energy 1984, 16, 129–146. [Google Scholar] [CrossRef]
- Grip, R.L. A Mechanical Model of an Axial Piston Machine. Ph.D. Thesis, KTH Industrial Engineering and Management, Stockholm, Sweden, 2009. [Google Scholar]
- Wenzhi, G.; Junmeng, Z.; Guanghua, L.; Qiang, B.; Liming, F. Performance evaluation and experiment system for waste heat recovery of diesel engine. Energy 2013, 55, 226–235. [Google Scholar] [CrossRef]
- Han, S.; Seo, J.; Choi, B.-S. Development of a 200 kW ORC radial turbine for waste heat recovery. J. Mech. Sci. Technol. 2014, 28, 5231–5241. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, D.; Cao, Y.; Dai, Y. Preliminary design and off-design performance analysis of an Organic Rankine Cycle radial-inflow turbine based on mathematic method and CFD method. Appl. Therm. Eng. 2017, 112, 25–37. [Google Scholar] [CrossRef]
- Wong, C.S. Design Process of Low Temperature Organic Rankine Cycle (LT-ORC). Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2015. [Google Scholar]
- Nithesh, K.G.; Chatterjee, D. Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system. Appl. Energy 2016, 167, 1–16. [Google Scholar] [CrossRef]
- Al Jubori, A.; Daabo, A.; Al-Dadah, R.K.; Mahmoud, S.; Ennil, A.B. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle. Energy Convers. Manag. 2016, 130, 141–155. [Google Scholar] [CrossRef]
- Yamamoto, T.; Furuhata, T.; Arai, N.; Mori, K. Design and testing of the Organic Rankine Cycle. Energy 2001, 26, 239–251. [Google Scholar] [CrossRef]
- Russel, H.; Rowlands, A.; Ventura, C.; Jahn, I. Design and Testing Process for a 7 kW Radial Inflow Refrigerant Turbine at the University of Queensland. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Korea, 13–17 June 2016; p. V008T23A036. [Google Scholar]
- Wang, H.; Peterson, R.B.; Herron, T. Experimental performance of a compliant scroll expander for an organic Rankine cycle. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 863–872. [Google Scholar] [CrossRef]
- Oudkerk, J.-F.; Quoilin, S.; Declaye, S.; Guillaume, L.; Winandy, E.; Lemort, V. Evaluation of the Energy Performance of an Organic Rankine Cycle-Based Micro Combined Heat and Power System Involving a Hermetic Scroll Expander. J. Eng. Gas Turbines Power 2013, 135, 042306. [Google Scholar] [CrossRef] [Green Version]
- Ayachi, F.; Ksayer, E.B.; Neveu, P.; Zoughaib, A. Experimental investigation and modeling of a hermetic scroll expander. Appl. Energy 2016, 181, 256–267. [Google Scholar] [CrossRef]
- Papes, I.; Degroote, J.; Vierendeels, J. New insights in twin screw expander performance for small scale ORC systems from 3D CFD analysis. Appl. Therm. Eng. 2015, 91, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Experimental Study on the Performance of Single Screw Expander with 195 mm Diameter Screw. In Proceedings of the 2nd International Seminar on ORC Power Systems, Rotterdam, The Netherlands, 7–8 October 2013. [Google Scholar]
- Tang, H.; Wu, H.; Wang, X.; Xing, Z. Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator. Energy 2015, 90, 631–642. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Ma, C.; Liu, L.; Yu, J. Preliminary experimental study of single screw expander prototype. Appl. Therm. Eng. 2011, 31, 3684–3688. [Google Scholar] [CrossRef]
- Ziviani, D.; Gusev, S.; Lecompte, S.; Groll, E.A.; Braun, J.E.; Horton, W.T.; van den Broek, M.; De Paepe, M. Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery. Appl. Energy 2016, 181, 155–170. [Google Scholar] [CrossRef]
- Oudkerk, J.; Dickes, R.; Dumont, O.; Lemort, V. Experimental performance of a piston expander in a smallscale organic Rankine cycle. In Proceedings of the 9th International Conference on Compressors and Their Systems, London, UK, 5–9 September 2015. [Google Scholar]
- Zheng, N.; Zhao, L.; Wang, X.D.; Tan, Y.T. Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle. Appl. Energy 2013, 112, 1265–1274. [Google Scholar] [CrossRef]
- Lemorta, V.; Guillaumea, L.; Legrosa, A.; Declayea, S.; Quoilina, S. A Comparison of Piston, Screw and Scroll Expanders for Small-Scale Rankine Cycle Systems. In Proceedings of the 3rd International Conference on Microgeneration and Related Technologies, Naples, Italy, 15–17 April 2013. [Google Scholar]
- Han, Y.; Li, R.; Liu, Z.; Tian, J.; Wang, X.; Kang, J. Feasibility analysis and performance characteristics investigation of spatial recuperative expander based on organic Rankine cycle for waste heat recovery. Energy Convers. Manag. 2016, 121, 335–348. [Google Scholar] [CrossRef]
- Vodicka, V.; Guillaume, L.; Mascuch, J.; Lemort, V. Testing and Modelling A Vne Expander Used in an ORC Working with HexamethyldisIloxane (MM). In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015. [Google Scholar]
- Kolasiński, P. The influence of the heat source temperature on the multivane expander output power in an Organic Rankine Cycle (ORC) system. Energies 2015, 8, 3351–3369. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, B.; Pu, L.; Guo, B.; Peng, X. Improved rotary vane expander for trans-critical CO2 cycle by introducing high-pressure gas into the vane slots. Int. J. Refrig. 2011, 34, 732–741. [Google Scholar] [CrossRef]
- Tahir, M.B.M.; Yamada, N.; Hoshino, T. Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery. Int. J. Environ. Sci. Eng. 2010, 2, 11–16. [Google Scholar]
- La Seta, A.; Meroni, A.; Andreasen, J.G.; Pierobon, L.; Persico, G.; Haglind, F. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study. Energies 2016, 9, 393. [Google Scholar] [CrossRef] [Green Version]
- Shadreck, M.; Situmbeko, F.L. Inambao Small Scale Axial Turbine Preliminary Design and Modelling. Int. J. Eng. Res. Technol. 2016, 5, 683–690. [Google Scholar]
- Lazzaretto, A.; Manente, G. A new criterion to optimize ORC design performance using efficiency correlations for axial and radial turbines. Int. J. Thermodyn. 2014, 17, 173–181. [Google Scholar] [CrossRef]
- Oomori, H.; Ogino, S. Waste Heat Recovery of Passenger Car Using a Combination of Rankine Bottoming Cycle and Evaporative Engine Cooling System; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1993. [Google Scholar]
- Kane, M. Small hybrid solar power system. Energy 2003, 28, 1427–1443. [Google Scholar] [CrossRef] [Green Version]
- Kane, M.; Favrat, D.; Gay, B.; Andres, O. Scroll expander organic Rankine cycle (ORC) efficiency boost of biogas engines. In Proceedings of the ECOS 2007, Padova, Italy, 25–28 June 2007; pp. 1–8. [Google Scholar]
- Mathias, J.A.; Johnston, J.R.; Cao, J.; Priedeman, D.K.; Christensen, R.N. Experimental Testing of Gerotor and Scroll Expanders Used in, and Energetic and Exergetic Modeling of, an Organic Rankine Cycle. J. Energy Resour. Technol. 2009, 131, 012201. [Google Scholar] [CrossRef]
- Clemente, S.; Micheli, D.; Reini, M.; Taccani, R. Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications. Appl. Energy 2012, 97, 792–801. [Google Scholar] [CrossRef]
- Yu, G.; Shu, G.; Tian, H.; Wei, H.; Liu, L. Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy 2013, 51, 281–290. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, D.; Kim, C. Optimization of Design Pressure Ratio of Positive Displacement Expander for Vehicle Engine Waste Heat Recovery. Energies 2014, 7, 6105–6117. [Google Scholar] [CrossRef] [Green Version]
- Petr, P.; Schröder, C.; Kohler, J.; Graber, M. Optimal Control of Waste Heat Recovery Systems Applying Nonlinear Model Predictive Control (NMPC). In Proceedings of the 3rd Seminar on ORC Systems, Brussels, Belgium, 12–14 October 2015. [Google Scholar]
- Leibowitz, H.; Smith, I.K.; Stosic, N. Cost Effective Small Scale ORC Systems for Power Recovery from Low Grade Heat Sources. In Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, USA, 5–10 November 2006; Volume 2006, pp. 521–527. [Google Scholar]
- Wu, Y.; Lei, B.; Wang, W.; Zhang, Y. Experimental Study on Organic Rankine Cycle System with Single-Screw Expander for Waste Heat Recovery from Diesel. In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015; pp. 1–10. [Google Scholar]
- Poulin, E.; Demler, R.; Krepchin, I.; Walker, D. Steam Bottoming Cycle for an Adiabatic Diesel Engine; DOE/NASA-0030-1; NASA-CR-168255 ON: DE85001318; Foster-Miller Inc.: Waltham, MA, USA, 1984. [Google Scholar]
- Kubo, I. Technical and Economic Study of Stirling and Rankine Cycle Bottoming Systems for Heavy Truck Diesel Engines; DOE/NASA/0361-1; NASA-CR-180833; CTR-0723-87001; Cummins Engine Co., Inc.: Washington, DC, USA, 1987. [Google Scholar]
- Seher, D.; Lengenfelder, T.; Gerhardt, J.; Eisenmenger, N.; Hackner, M.; Krinn, I. Waste Heat Recovery for Commercial Vehicles with a Rankine Process. In Proceedings of the 21st Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, 8–10 October 2012. [Google Scholar]
- Daccord, R.; Darmedru, A.; Melis, J. Oil-Free Axial Piston Expander for Waste Heat Recovery. In Proceedings of the SAE 2014 World Congress & Exhibition, Detroit, MI, USA, 8–10 April 2014; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Chiong, M.C.; Rajoo, S.; Romagnoli, A. Nozzle Steam Piston Expander for Engine Exhaust Energy Recovery; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015; pp. 2–6. [Google Scholar]
- Galindo, J.; Dolz, V.; Royo, L.; Haller, R.; Melis, J. Study of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive IC Engine Using n ORC with Ethanol. In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015; pp. 1–17. [Google Scholar]
- Xinxin, Z.; Ke, Z.; Sujuan, B.A.I.; Ying, Z.; He, M. Exhaust Recovery of Vehicle Gasoline Engine Based on Organic Rankine Cycle. In Proceedings of the SAE 2011 World Congress & Exhibition, Detroit, MI, USA, 12–14 April 2011; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Declaye, S.; Quoilin, S.; Guillaume, L.; Lemort, V. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013, 55, 173–183. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Wu, Y.-T.; Xia, G.-D.; Ma, C.-F.; Ji, W.-N.; Liu, S.-W.; Yang, K.; Yang, F.-B. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy 2014, 77, 499–508. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Sherif, S.A.; Lear, W.E. Frictional and Internal Leakage Losses in Rotary-Vane Two-Phase Refrigerating Expanders. J. Energy Resour. Technol. 2010, 132, 21007–21010. [Google Scholar] [CrossRef]
- Latz, G.; Andersson, S.; Munch, K. Selecting an Expansion Machine for Vehicle Waste-Heat Recovery Systems Based on the Rankine Cycle. SAE Int. 2013, 1, 1–15. [Google Scholar] [CrossRef]
- Gorla, R.S.; Khan, A.A. Turbomachinery: Design and Theory; Marcel Dekker, Inc.: New York, NY, USA, 2005; ISBN 0-8247-0980-2. [Google Scholar]
- Khalil, K.M.; Mahmoud, S.; Al-Dadah, R.K.; Ennil, A.B. Investigate a hybrid open-Rankine cycle small-scale axial nitrogen expander by a camber line control point parameterization optimization technique. Appl. Therm. Eng. 2017, 127, 823–836. [Google Scholar] [CrossRef]
- Dong, B.; Xu, G.; Luo, X.; Zhuang, L.; Quan, Y. Analysis of the supercritical organic Rankine cycle and the radial turbine design for high temperature applications. Appl. Therm. Eng. 2017, 123, 1523–1530. [Google Scholar] [CrossRef]
- Patterson, D.J.; Kruiswyk, R.W. An Engine System Approach to Exhaust Waste Heat Recovery. In Proceedings of the Diesel Engine-Efficiency and Emissions Research (DEER), Detroit, MI, USA, 13–16 August 2007. [Google Scholar]
- Saravanamuttoo, H.; Rogers, G.; Cohen, H.; Straznicky, P. Gas Turbine Theory, 6th ed.; Pearson Education Limited: London, UK, 2009. [Google Scholar]
- TMI Staff & Contributers; Turbomachinery International: Norwalk, CT, USA, 2012.
- Alshammari, F.; Karvountzis-Kontakiotis, A.; Pesiridis, A. Radial turbine expander design for organic rankine cycle, waste heat recovery in high efficiency, off-highway vehicles. In Proceedings of the 3rd Biennial International Conference on Powertrain Modelling and Control (PMC 2016), Loughborough, UK, 7–9 September 2016. [Google Scholar]
- Kunte, H.; Seume, J. Partial Admission Impulse Turbine for Automotive ORC Application; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013; Volume 6. [Google Scholar]
- Sauret, E.; Rowlands, A.S. Candidate radial-inflow turbines and high-density working fluids for geothermal power systems. Energy 2011, 36, 4460–4467. [Google Scholar] [CrossRef]
- Doyle, E.; DiNanno, L.; Kramer, S. Installation of a Diesel-Organic Rankine Compound Engine in a Class 8 Truck for a Single-Vehicle Test; SAE Technical Paper 790646; SAE International: Warrendale, PA, USA, 1979. [Google Scholar]
- Hnat, G.; Patten, J.S.; Bartone, L.M.; Cutting, J.C. Industrial Heat Recovery with Organic Rankine Cycles. In Proceedings of the 4th Industrial Energy Technology Conference, Houston, TX, USA, 4–7 April 1982; pp. 524–532. [Google Scholar]
- Serrano, D.; Smague, P.; Tona, P.; Leduc, P.; Mintsa, A.C.; Leroux, A.; Chevalier, A.P. Improving Train Energy Efficiency by Organic Rankine Cycle (ORC) for Recovering Waste Heat from Exhaust Gas. In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015. [Google Scholar]
- Cipollone, R.; Di Battista, D.; Bettoja, F. Performances of an ORC power unit for Waste Heat Recovery on Heavy Duty Engine. Energy Procedia 2017, 129, 770–777. [Google Scholar] [CrossRef]
- Briggs, T.E.; Wagner, R.; Edwards, D.; Curran, S.; Nafziger, E. A Waste Heat Recovery System for Light Duty Diesel Engines; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2010. [Google Scholar]
- Cogswell, F.J.; Gerlach, D.W.; Wagner, T.C.; Mulugeta, J. Design of an Organic Rankine Cycle for Waste Heat Recovery from a Portable Diesel Generator. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; Volume 4, pp. 707–716. [Google Scholar]
- Park, T.; Teng, H.; Hunter, G.L.; van der Velde, B.; Klaver, J. A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines—Experimental Results; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2011; p. 1. [Google Scholar]
- Lang, W.; Colonna, P.; Almbauer, R. Assessment of Waste Heat Recovery from a Heavy-Duty Truck Engine by Means of an ORC Turbogenerator. J. Eng. Gas Turbines Power 2013, 135, 042313. [Google Scholar] [CrossRef]
- Furukawa, T.; Nakamura, M.; Machida, K.; Shimokawa, K. A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks. In Proceedings of the SAE 2014 World Congress & Exhibition, Detroit, MI, USA, 8–10 April 2014; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Costall, A.W.; Gonzalez Hernandez, A.; Newton, P.J.; Martinez-Botas, R.F. Design methodology for radial turbo expanders in mobile organic Rankine cycle applications. Appl. Energy 2015, 157, 729–743. [Google Scholar] [CrossRef]
- Rudenko, O.; Moroz, L.; Burlaka, M.; Joly, C. Design of Waste Heat Recovery Systems Based on Supercritical ORC for Powerful Gas and Diesel Engines. In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015; pp. 1–10. [Google Scholar]
- Guillaume, L.; Legros, A.; Desideri, A.; Lemort, V. Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd. Appl. Energy 2017, 186, 408–422. [Google Scholar] [CrossRef] [Green Version]
- Leduc, P.; Smague, P.; Leroux, A.; Henry, G. Low temperature heat recovery in engine coolant for stationary and road transport applications. Energy Procedia 2017, 129, 834–842. [Google Scholar] [CrossRef]
- Alshammari, F.; Karvountzis-Kontakiotis, A.; Pesiridis, A.; Minton, T. Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System. Energy Procedia 2017, 129, 285–292. [Google Scholar] [CrossRef]
- Karvountzis-Kontakiotis, A.; Alshammari, F.; Pesiridis, A.; Franchetti, B.; Pesmazoglou, I.; Tocci, L. Variable Geometry Turbine Design for Off-Highway Vehicle Organic Rankine Cycle Waste Heat Recovery. In Proceedings of the THIESEL 2016 Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines, Valencia, Spain, 13–16 September 2016. [Google Scholar]
- Andreas, P. Weib Volumetric Expander versus Turbine—Which Is the Better Choice for Small ORC Plants. In Proceedings of the 3rd International Seminar on ORC Power Systems, Brussels, Belgium, 12–14 October 2015; pp. 1–10. [Google Scholar]
- Balje, O.E. Turbomachines: A Guide to Design, Selection, and Theory; Wiley: New York, NY, USA, 1981; ISBN 0471060364. [Google Scholar]
- Dixon, S.L.; Hall, C. Fluid Mechanics and Thermodynamics of Turbomachinery; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar]
- Badr, O.; Probert, S.D.; O’Callaghan, P.W. Selecting a working fluid for a Rankine-cycle engine. Appl. Energy 1985, 21, 1–42. [Google Scholar] [CrossRef]
- Watson, N.; Janota, M.S. Turbocharging the Internal Combustion Engine, 1st ed.; MacMilan: New York, NY, USA, 1982. [Google Scholar]
- Pierobon, L.; Nguyen, T.-V.; Larsen, U.; Haglind, F.; Elmegaard, B. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform. Energy 2013, 58, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Lecompte, S.; Huisseune, H.; van den Broek, M.; De Schampheleire, S.; De Paepe, M. Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system. Appl. Energy 2013, 111, 871–881. [Google Scholar] [CrossRef]
- Quoilin, S.; Declaye, S.; Tchanche, B.F.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Shu, G.; Tian, H.; Wei, H.; Liang, X. Multi-approach evaluations of a cascade-Organic Rankine Cycle (C-ORC) system driven by diesel engine waste heat: Part B-techno-economic evaluations. Energy Convers. Manag. 2016, 108, 596–608. [Google Scholar] [CrossRef]
- Garg, P.; Orosz, M.S.; Kumar, P. Thermo-economic evaluation of {ORCs} for various working fluids. Appl. Therm. Eng. 2016, 109, 841–853. [Google Scholar] [CrossRef]
- Meyer, D.; Wong, C.; Engel, E.; Krumdieck, S. Design and Build of a1 Kilowatt Organic Rankine Cycle Power Generatio. In Proceedings of the 35th New Zealand Geothermal Workshop, Rotorua, New Zealand, 18–21 November 2013. [Google Scholar]
- Gutiérrez-Arriaga, C.G.; Abdelhady, F.; Bamufleh, H.S.; Serna-González, M.; El-Halwagi, M.M.; Ponce-Ortega, J.M. Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technol. Environ. Policy 2015, 17, 767–779. [Google Scholar] [CrossRef]
- Turton, R.; Bailie, R.; Whiting, W.; Shaeiwitz, J. Synthesis and Design of Chemical Processes, 3rd ed.; Pearson Education, Inc.: London, UK, 2009. [Google Scholar]
- Lemmens, S. Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems. Energies 2016, 9, 485. [Google Scholar] [CrossRef]
- Walraven, D.; Laenen, B.; D’haeseleer, W. Economic system optimization of air-cooled organic Rankine cycles powered by low-temperature geothermal heat sources. Energy 2015, 80, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wei, M.; Yang, L.; Wang, X. Thermo-economic analysis and optimization selection of ORC system configurations for low temperature binary-cycle geothermal plant. Appl. Therm. Eng. 2017, 125, 153–164. [Google Scholar] [CrossRef]
- Li, S.; Dai, Y. Thermo-economic comparison of Kalina and CO2 transcritical power cycle for low temperature geothermal sources in China. Appl. Therm. Eng. 2014, 70, 139–152. [Google Scholar] [CrossRef]
- Toffolo, A.; Lazzaretto, A.; Manente, G.; Paci, M. A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems. Appl. Energy 2014, 121, 219–232. [Google Scholar] [CrossRef]
- Shengjun, Z.; Huaixin, W.; Tao, G. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl. Energy 2011, 88, 2740–2754. [Google Scholar] [CrossRef]
- Pei, G.; Li, J.; Li, Y.; Wang, D.; Ji, J. Construction and dynamic test of a small-scale organic rankine cycle. Energy 2011, 36, 3215–3223. [Google Scholar] [CrossRef]
- Jung, H.-C.; Taylor, L.; Krumdieck, S. An experimental and modelling study of a 1 kW organic Rankine cycle unit with mixture working fluid. Energy 2015, 81, 601–614. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; He, W.; Gao, L.; Wang, B.; Ma, S.; Dai, Y. Construction and preliminary test of a low-temperature regenerative Organic Rankine Cycle (ORC) using R123. Renew. Energy 2013, 57, 216–222. [Google Scholar] [CrossRef]
- Zywica, G.; Kaczmarczyk, T.; Ihnatowicz, E. Expanders for dispersed power generation: Maintenance and diagnostics problems. Trans. Inst. Fluid-Flow Mach. 2016, 131, 173–180. [Google Scholar]
- Zywica, G.; Kaczmarczyk, T.Z.; Ihnatowicz, E. A review of expanders for power generation in small-scale organic Rankine cycle systems: Performance and operational aspects. Proc. Inst. Mech. Eng. Part A J. Power Energy 2016, 230, 669–684. [Google Scholar] [CrossRef]
- Kolasinski, P.; Błasiak, P.; Rak, J. Experimental and Numerical Analyses on the Rotary Vane Expander Operating Conditions in a Micro Organic Rankine Cycle System. Energies 2016, 9, 606. [Google Scholar] [CrossRef]
Authors | Ref. | Expander Type | Power Range (kW) | Expander Speed (rpm) | Mass Flow Rate (kg/s) | Working Fluid |
---|---|---|---|---|---|---|
Han et al. | [116] | Radial | 25–250 | 7500–16,500 | 3–7.4 | R245fa |
Zheng et al. | [117] | Radial | 640–780 | 8000 | 41.1 | R134a |
Wong, C.S. | [118] | Radial | 16–27 | 67,660 | 1.18–1.82 | R134a |
Nithesh et al. | [119] | Radial | 5–12 | 22,000 | 0.1–1 | R134a |
Al Jubori et al. | [120] | Radial | 3–8 | 20,000–60,000 | 0.1–0.5 | R245fa |
Yamamoto et al. | [121] | Radial | 0.54–0.55 | 35,000 | 0.058–0.065 | R123 |
Russell et al. | [122] | Radial | 6.8–8 | 30,000–207,300 | 0.274 | R245fa |
Wang et al. | [123] | Scroll | 0.58–0.64 | 2000–3700 | 0.022–0.0245 | R134a |
Oudkerk et al. | [124] | Scroll | 2.8 | N/A | 0.139 | R245fa |
Quoilin et al. | [37] | Scroll | 0.2–2 | 700–4000 | 0.05–0.095 | R123 |
Ayachi et al. | [125] | Scroll | 0.2–2.5 | 3010–3090 | 0.07–0.17 | Water |
Papes et al. | [126] | Screw | 0–8 | 400–8000 | 0.07–0.28 | R245fa |
Zhang Y. | [127] | Screw | 10–35 | 1600–3200 | N/A | copressed air |
Tang et al. | [128] | Screw | 200–560 | 1250–6000 | 18–66 | R123 |
Wang et al. | [129] | Screw | 4.4–5 | 2200–3000 | 0.14 | compressed air |
Ziviani et al. | [130] | Screw | 1–8 | 2000–3300 | 0.51 | R245fa |
Zhang et al. | [15] | Screw | 2–11 | 1000–2600 | N/A | R123 |
Oudkerk et al. | [131] | Piston | 0.25–2 | 1000–4000 | 0.03–0.11 | R245fa |
Galindo et al. | [27] | Piston | 0.2–1.6 | 1000–5000 | 0.01–0.75 | Ethanol |
Zheng et al. | [132] | Piston | 0.16–0.32 | 400–700 | N/A | R245fa |
Lemort et al. | [133] | Piston | N/A | N/A | 0.1 | Water |
Han et al. | [134] | Piston | N/A | 1500 | 0–1.5 | R123 |
Vodicka et al. | [135] | Vane | 0.55–1.075 | 2550–4012 | 0.056–0.07 | hexamethyldisiloxane |
Kolasiński | [136] | Vane | 0.1–0.4 | N/A | N/A | R123 |
Antonelli et al. | [136] | Vane | 3.9–31 | 500–1500 | 0.012–0.032 | R245fa |
Jia et al. | [137] | Vane | 0.8–0.955 | 800–1800 | N/A | N/A |
Tahir et al. | [138] | Vane | 0.012–0.031 | 2600–3000 | N/A | R245fa |
Al Jubori et al. | [120] | Axial | 2.8–7.8 | 10,000–60,000 | 0.1–0.5 | R245fa |
Seta et al. | [139] | Axial | N/A | 2500–20,000 | 10–150 | N/A |
Shadreck et al. | [140] | Axial | N/A | 5000–65,000 | 0.909 | R245fa |
Lazzaretto et al. | [141] | Axial | 260–350 | 4101–14,561 | 10–100 | R245fa |
Component | Coefficients | |||
---|---|---|---|---|
Expander | 2.2476 | 1.4965 | −0.1618 | |
Evaporator | 4.6656 | −0.1557 | 0.1547 | |
Condenser | 4.6656 | −0.1557 | 0.1547 | |
Pump | 3.3892 | 0.0536 | 0.1538 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, F.; Karvountzis-Kontakiotis, A.; Pesyridis, A.; Usman, M. Expander Technologies for Automotive Engine Organic Rankine Cycle Applications. Energies 2018, 11, 1905. https://doi.org/10.3390/en11071905
Alshammari F, Karvountzis-Kontakiotis A, Pesyridis A, Usman M. Expander Technologies for Automotive Engine Organic Rankine Cycle Applications. Energies. 2018; 11(7):1905. https://doi.org/10.3390/en11071905
Chicago/Turabian StyleAlshammari, Fuhaid, Apostolos Karvountzis-Kontakiotis, Apostolos Pesyridis, and Muhammad Usman. 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications" Energies 11, no. 7: 1905. https://doi.org/10.3390/en11071905
APA StyleAlshammari, F., Karvountzis-Kontakiotis, A., Pesyridis, A., & Usman, M. (2018). Expander Technologies for Automotive Engine Organic Rankine Cycle Applications. Energies, 11(7), 1905. https://doi.org/10.3390/en11071905