The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application
Abstract
:1. Introduction
2. Wind Potential in the Southeastern Corridor of Pakistan
Meteorological Data of the Selected Locations
3. Research Framework
3.1. Factor Analysis (FA)
3.1.1. Importance of Economic, Technical, Environmental, Political, and Social Factors
3.1.2. Factor Analysis for Determining the Sub-Criteria
3.2. Multi-Criteria Decision Making (MCDM) Approach
3.2.1. Analytical Hierarchy Process (AHP)
- It helps in managing complex decision problems, and unorganized and multi-characteristic issues.
- It helps decision-makers to evaluate complex problems in a hierarchical order and makes it simple.
- It can be used for both quantitative and qualitative data.
- It organizes in a hierarchical model for solving intricate decision problems.
- It provides consistency during the assessment process.
- Step 1
- Firstly, construct a decision hierarchy with criteria and goal at the top of the hierarchy.
- Step 2
- Develop a pairwise comparison matrix of the criteria and sub-criteria with accurate consistency. The pairwise comparison matrix was obtained from experts using a 1–9 point scale, which is illustrated in Table 6. The matrix was acquired as , where donates the number of criteria.
- Step 3
- Let denote the preference order of the objective as compared to the objective. After that, .
- Step 4
- To obtain the normalized pairwise comparison matrix it is important to follow the proper procedures, such as calculating the sum of the column, dividing each matrix by its obtained column sum, and taking the average of the rows to get the relative weights.
- Step 5
- In this step, the Eigen vector, maximum Eigen value, and consistency index can be calculated using Equation (1).
- Step 6
3.2.2. Fuzzy Technique for Order Preference by Similarity to the Ideal Solution (FTOPSIS)
- Step 5
- Compute the distance of each alternative from the fuzzy and fuzzy using Equations (13) and (14).
- Step 6
- Compute the closeness coefficient of the alternative to the positive and negative ideal solution using Equation (16).
- Step 7
- Rank the alternatives and select the one with the biggest value of . The finest alternative is the one having the minimum distance to the fuzzy positive ideal solution and the maximum to the fuzzy negative ideal solution.
3.2.3. The Survey Respondents for AHP and Fuzzy TOPSIS Study
4. Results and Analysis
4.1. Factor Analysis Results
4.1.1. Economic Factor (EF)
Development Cost (EF1)
On-Grid Accessibility (EF2)
Road Availability (EF3)
4.1.2. Environmental Factor (EN)
Impact on Public Health and Community (EN1)
Impact on Wildlife and Habitat (EN2)
Area of Flatland and without Forest Cover (EN3)
4.1.3. Technical Factor (TF)
Wind Data Availability (TF1)
Skilled Manpower Availability (TF2)
Climate Conditions (TF3)
4.1.4. Political Factor (PF)
Government Policies (PF1)
Land Acquisition (PF2)
Relocation and Rehabilitation (PF3)
4.1.5. Social Factor (SF)
Effect on Local Economic Development (SF1)
Distance from Residential Areas (SF2)
Effect on Employment and Agriculture (SF3)
Social Acceptance (SF4)
4.2. AHP Results
4.2.1. Main Criteria Weights
4.2.2. Sub-Criteria Weights
4.3. Fuzzy TOPSIS Results
4.4. Sensitivity Analysis
5. Discussion and Recommendations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Acronyms
FA | Factor Analysis |
SPSS | Statistical Package for the Social Sciences |
MCDM | Multi-Criteria Decision Making |
AHP | Analytical Hierarchy Process |
FTOPSIS | Fuzzy Technique for Order of Preference by Similarity to Ideal Solution |
RE | Renewable Energy |
GoP | Government of Pakistan |
EETPS | Economic, Environmental, Technical, Political, and Social |
CI | Consistency Index |
CR | Consistency Ratio |
RI | Random Index |
TFNs | Triangular Fuzzy Numbers |
References
- Ashraf, C.M.; Raza, R.; Hayat, S.A. Renewable Energy Technologies in Pakistan: Prospects and Challenges. Renew. Sustain. Energy Rev. 2009, 13, 1657–1662. [Google Scholar] [CrossRef]
- Zabel, G. Peak People: The Interrelationship between Population Growth and Energy Resources. Energy Bull. 2009. Available online: http://www2.energybulletin.net/node/48677 (accessed on 24 July 2018).
- Thapar, S.; Sharma, S.; Verma, A. Economic and Environmental Effectiveness of Renewable Energy Policy Instruments: Best Practices from India. Renew. Sustain. Energy Rev. 2016, 66, 487–498. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Climate Change Impacts on Wind Energy: A Review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Zameer, H.; Wang, Y. Energy Production System Optimization: Evidence from Pakistan. Renew. Sustain. Energy Rev. 2018, 82, 886–893. [Google Scholar] [CrossRef]
- Ghafoor, A.; Rehman, T.U.; Munir, A.; Ahmad, M.; Iqbal, M. Current Status and Overview of Renewable Energy Potential in Pakistan for Continuous Energy Sustainability. Renew. Sustain. Energy Rev. 2016, 60, 1332–1342. [Google Scholar] [CrossRef]
- Shami, S.H.; Ahmad, J.; Zafar, R.; Haris, M.; Bashir, S. Evaluating Wind Energy Potential in Pakistan’s Three Provinces, with Proposal for Integration into National Power Grid. Renew. Sustain. Energy Rev. 2016, 53, 408–421. [Google Scholar] [CrossRef]
- Ministry of Energy. Alternative Energy Development Board. Available online: http://aedb.org/ae-technologies/wind-power/wind-current-status (accessed on 14 March 2018).
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. Identification and Selection of Potential Sites for Onshore Wind Farms Development in Region of Murcia, Spain. Energy 2014, 73, 311–324. [Google Scholar] [CrossRef]
- Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A. Energy Intensities, EROIs (Energy Returned on Invested), and Energy Payback Times of Electricity Generating Power Plants. Energy 2013, 52, 210–221. [Google Scholar] [CrossRef]
- Georgiadis, D.R.; Mazzuchi, T.A.; Sarkani, S. Using Multi Criteria Decision Making in Analysis of Alternatives for Selection of Enabling Technology. Syst. Eng. 2013, 16, 287–303. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Chang, H.-K.; Liou, J.-C.; Chen, W.-W. Protection Priority in the Coastal Environment Using a Hybrid AHP-TOPSIS Method on the Miaoli Coast, Taiwan. J. Coast. Res. 2012, 280, 369–374. [Google Scholar] [CrossRef]
- Pakistan Bureau of Statistics 6th Population and Housing Census. Government of Pakistan. Available online: http://www.pbs.gov.pk/content/provisional-summary-results-6th-population-and-housing-census-2017-0 (accessed on 24 July 2018).
- Sindh Energy Department. Alternative Energy Potential in Sindh. Available online: http://sindhenergy.gov.pk/investment-opportunity/investment-opportunity-in-alternate-energy/ (accessed on 25 April 2018).
- Khan, I.; Chowdhury, H.; Rasjidin, R.; Alam, F.; Islam, T.; Islam, S. Review of Wind Energy Utilization in South Asia. Procedia Eng. 2012, 49, 213–220. [Google Scholar] [CrossRef]
- Pakistan Meteorological Department. WIND ENERGY PROJECT. Available online: http://www.pmd.gov.pk/wind/Wind_Project_files/Page406.html (accessed on 25 April 2018).
- Badger, J.; Badger, M.; Kelly, M.; Guo Larsén, X. Global Wind Atlas. Available online: https://globalwindatlas.info/ (accessed on 9 July 2018).
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Greener Energy: Issues and Challenges for Pakistan-Wind Power Prospective. Renew. Sustain. Energy Rev. 2013, 20, 519–538. [Google Scholar] [CrossRef]
- Baloch, M.H.; Abro, S.A.; Kaloi, G.S.; Mirjat, N.H.; Tahir, S.; Nadeem, M.H.; Gul, M.; Memon, Z.A.; Kumar, M. A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones. Sustainability 2017, 9, 1611. [Google Scholar] [CrossRef]
- Baloch, M.H.; Kaloi, G.S.; Memon, Z.A. Current Scenario of the Wind Energy in Pakistan Challenges and Future Perspectives: A Case Study. Energy Rep. 2016, 2, 201–210. [Google Scholar] [CrossRef]
- Thorndike, R.M. History of Factor Analysis: A Psychological Perspective; Wiley Online Library, Western Washington University: Bellingham, WA, USA, 2005. [Google Scholar]
- Waris, M.; Shahir Liew, M.; Khamidi, M.F.; Idrus, A. Criteria for the Selection of Sustainable Onsite Construction Equipment. Int. J. Sustain. Built Environ. 2014, 3, 96–110. [Google Scholar] [CrossRef]
- Braeken, J.; Van Assen, M.A.L.M. An Empirical Kaiser Criterion. Psychol. Methods 2017, 22, 450–466. [Google Scholar]
- Maynard, J.E.; Lovecraft, A.; Rose, C.; Chapin, T., III. Factors Influencing the Development of Wind Power in Rural Alaska Communities. Available online: https://www.uaf.edu/files/rap/Maynard-thesis.pdf (accessed on 24 July 2018).
- Latinopoulos, D.; Kechagia, K. A GIS-Based Multi-Criteria Evaluation for Wind Farm Site Selection. A Regional Scale Application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Azizi, A.; Malekmohammadi, B.; Jafari, H.R.; Nasiri, H.; Amini Parsa, V. Land Suitability Assessment for Wind Power Plant Site Selection Using ANP-DEMATEL in a GIS Environment: Case Study of Ardabil Province, Iran. Environ. Monit. Assess. 2014, 186, 6695–6709. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Badi, A. Wind Farm Land Suitability Indexing Using Multi-Criteria Analysis. Renew. Energy 2012, 44, 80–87. [Google Scholar] [CrossRef]
- Tegou, L.-I.; Polatidis, H.; Haralambopoulos, D.A. Environmental Management Framework for Wind Farm Siting: Methodology and Case Study. J. Environ. Manag. 2010, 91, 2134–2147. [Google Scholar] [CrossRef] [PubMed]
- Gigović, L.; Pamučar, D.; Božanić, D.; Ljubojević, S. Application of the GIS-DANP-MABAC Multi-Criteria Model for Selecting the Location of Wind Farms: A Case Study of Vojvodina, Serbia. Renew. Energy 2017, 103, 501–521. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Yousefi, H.; Mohammadi, M. Multi-Criteria Decision Support System for Wind Farm Site Selection Using GIS. Sustain. Energy Technol. Assess. 2016, 13, 38–50. [Google Scholar] [CrossRef]
- Ali, Y.; Butt, M.; Sabir, M.; Mumtaz, U.; Salman, A. Selection of Suitable Site in Pakistan for Wind Power Plant Installation Using Analytic Hierarchy Process (AHP). J. Control Decis. 2017, 5, 117–128. [Google Scholar] [CrossRef]
- Pamučar, D.; Gigović, L.; Bajić, Z.; Janošević, M. Location Selection for Wind Farms Using GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers. Sustainability 2017, 9, 1315. [Google Scholar] [CrossRef]
- Yeh, T.M.; Huang, Y.L. Factors in Determining Wind Farm Location: Integrating GQM, Fuzzy DEMATEL, and ANP. Renew. Energy 2014, 66, 159–169. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, P.; Jankowski, J.; Zioło, M. Green Energy for a Green City—A Multi-Perspective Model Approach. Sustainability 2016, 8, 702. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, P.; Wolski, W. Methodological Aspects of Decision Support System for the Location of Renewable Energy Sources. In Proceedings of the Computer Science and Information Systems (FedCSIS), 2015 Federated Conference, Lodz, Poland, 13 September 2015; pp. 1451–1459. [Google Scholar]
- Wu, Y.; Zhang, J.; Yuan, J.; Geng, S.; Zhang, H. Study of Decision Framework of Offshore Wind Power Station Site Selection Based on ELECTRE-III under Intuitionistic Fuzzy Environment: A Case of China. Energy Convers. Manag. 2016, 113, 66–81. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. GIS-Based Onshore Wind Farm Site Selection Using Fuzzy Multi-Criteria Decision Making Methods. Evaluating the Case of Southeastern Spain. Appl. Energy 2016, 171, 86–102. [Google Scholar] [CrossRef]
- Azadeh, A.; Ghaderi, S.F.; Nasrollahi, M.R. Location Optimization of Wind Plants in Iran by an Integrated Hierarchical Data Envelopment Analysis. Renew. Energy 2011, 36, 1621–1631. [Google Scholar] [CrossRef]
- Azadeh, A.; Rahimi-Golkhandan, A.; Moghaddam, M. Location Optimization of Wind Power Generation-Transmission Systems under Uncertainty Using Hierarchical Fuzzy DEA: A Case Study. Renew. Sustain. Energy Rev. 2014, 30, 877–885. [Google Scholar] [CrossRef]
- Michaud, D.S.; Feder, K.; Keith, S.E.; Voicescu, S.A.; Marro, L.; Than, J.; Guay, M.; Denning, A.; McGuire, D.; Bower, T.; et al. Exposure to Wind Turbine Noise: Perceptual Responses and Reported Health Effects. J. Acoust. Soc. Am. 2016, 139, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-Based Site Suitability Analysis for Wind Farm Development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar] [CrossRef]
- Sonnberger, M.; Ruddat, M. Local and Socio-Political Acceptance of Wind Farms in Germany. Technol. Soc. 2017, 51, 56–65. [Google Scholar] [CrossRef]
- Del Río, P.; Burguillo, M. An Empirical Analysis of the Impact of Renewable Energy Deployment on Local Sustainability. Renew. Sustain. Energy Rev. 2009, 13, 1314–1325. [Google Scholar] [CrossRef]
- Ervural, B.C.; Evren, R.; Delen, D. A Multi-Objective Decision-Making Approach for Sustainable Energy Investment Planning. Renew. Energy 2018, 126, 387–402. [Google Scholar] [CrossRef]
- Browne, D.; O’Regan, B.; Moles, R. Use of Multi-Criteria Decision Analysis to Explore Alternative Domestic Energy and Electricity Policy Scenarios in an Irish City-Region. Energy 2010, 35, 518–528. [Google Scholar] [CrossRef]
- Mirjat, N.H.; Uqaili, M.A.; Harijan, K.; Mustafa, M.W.; Rahman, M.M.; Khan, M.W.A. Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan. Energies 2018, 11, 757. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. Mult. Attrib. Decis. Mak. 1981, 1, 58–191. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting. Resour. Alloc. 1980, 2, 287. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Dyer, J.S. Maut–Multiattribute Utility Theory. In Multiple Criteria Decision Analysis: State of the Art Surveys; Springer: New York, NY, USA, 2005; Volume 78, pp. 265–295. [Google Scholar]
- Atilgan, B.; Azapagic, A. An Integrated Life Cycle Sustainability Assessment of Electricity Generation in Turkey. Energy Policy 2016, 93, 168–186. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to Select and How to Rank Projects: The Promethee Method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Bana E Costa, C.A.; De Corte, J.M.; Vansnick, J.C. On the Mathematical Foundations of MACBETH. Int. Ser. Oper. Res. Manag. Sci. 2016, 233, 421–463. [Google Scholar] [Green Version]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A Review of Multi Criteria Decision Making (MCDM) towards Sustainable Renewable Energy Development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Ziemba, P.; Wa̧tróbski, J.; Zioło, M.; Karczmarczyk, A. Using the PROSA Method in Offshore Wind Farm Location Problems. Energies 2017, 10, 1755. [Google Scholar] [CrossRef]
- Ziemba, P. NEAT F-PROMETHEE—A New Fuzzy Multiple Criteria Decision Making Method Based on the Adjustment of Mapping Trapezoidal Fuzzy Numbers. Expert Syst. Appl. 2018, 110, 363–380. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on Multi-Criteria Decision Analysis Aid in Sustainable Energy Decision-Making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Alexander, M. Decision-Making Using the Analytic Hierarchy Process (AHP) and JMP® Scripting Language. Available online: http://www.jmp.com/about/events/summit2012/resources/Paper_Melvin_Alexander.pdf (accessed on 24 July 2018).
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83. [Google Scholar] [CrossRef]
- Song, B.; Kang, S. A Method of Assigning Weights Using a Ranking and Nonhierarchy Comparison. Adv. Decis. Sci. 2016, 2016, 9. [Google Scholar] [CrossRef]
- Afsordegan, A.; Sánchez, M.; Agell, N.; Zahedi, S.; Cremades, L.V. Decision Making under Uncertainty Using a Qualitative TOPSIS Method for Selecting Sustainable Energy Alternatives. Int. J. Environ. Sci. Technol. 2016, 13, 1419–1432. [Google Scholar] [CrossRef]
- Zare, K.; Mehri-Tekmeh, J.; Karimi, S. A SWOT Framework for Analyzing the Electricity Supply Chain Using an Integrated AHP Methodology Combined with Fuzzy-TOPSIS. Int. Strateg. Manag. Rev. 2015, 3, 66–80. [Google Scholar] [CrossRef]
- Han, H.; Trimi, S. A Fuzzy TOPSIS Method for Performance Evaluation of Reverse Logistics in Social Commerce Platforms. Expert Syst. Appl. 2018, 103, 133–145. [Google Scholar] [CrossRef]
- Roszkowska, E.; Wachowicz, T. Application of Fuzzy TOPSIS to Scoring the Negotiation Offers in Ill-Structured Negotiation Problems. Eur. J. Oper. Res. 2015, 242, 920–932. [Google Scholar] [CrossRef]
- Vafaeipour, M.; Hashemkhani, Z.S.; Morshed, V.M.H.; Derakhti, A.; Keshavarz, E.M. Assessment of Regions Priority for Implementation of Solar Projects in Iran: New Application of a Hybrid Multi-Criteria Decision Making Approach. Energy Convers. Manag. 2014, 86, 653–663. [Google Scholar] [CrossRef]
- Janke, J.R. Multicriteria GIS Modeling of Wind and Solar Farms in Colorado. Renew. Energy 2010, 35, 2228–2234. [Google Scholar] [CrossRef]
- Joseph Owen Roberts and Gail Mosey. Technical and Economic Feasibility Study of Utility-Scale Wind at the Doepke-Holliday Superfund Site. Available online: https://www.nrel.gov/docs/fy13osti/57674.pdf (accessed on 3 January2018).
- Luthra, S.; Kumar, S.; Kharb, R.; Ansari, M.F.; Shimmi, S.L. Adoption of Smart Grid Technologies: An Analysis of Interactions among Barriers. Renew. Sustain. Energy Rev. 2014, 33, 554–565. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Parry, T. Developing and Applying a GIS-Assisted Approach to Locating Wind Farms in the UK. Renew. Energy 2001, 24, 59–71. [Google Scholar] [CrossRef]
- McCunney, R.J.; Mundt, K.A.; Colby, W.D.; Dobie, R.; Kaliski, K.; Blais, M. Wind Turbines and Health. J. Occup. Environ. Med. 2015, 56, e133–e135. [Google Scholar] [CrossRef] [PubMed]
- UCSUSA. Environmental Impacts of Wind Power. Available online: http://www.ucsusa.org/clean-energy/renewable-energy/environmental-impacts-wind-power (accessed on 26 December 2017).
- National Renewable Energy Laboratory (NREL). Renewable Electricity Futures Study. U.S. Dep. Energy 2012, 1, 280. [Google Scholar]
- Tocco, H. A Few Guidelines for Selecting Sites. Available online: http://www.windpowerengineering.com/projects/guidelines-selecting-sites/ (accessed on 3 January 2018).
- Rehman, S.; Halawani, T.; Mohandes, M. Wind Power Cost Assessment at Twenty Locations in the Kingdom of Saudi Arabia. Renew. Energy 2003, 28, 573–583. [Google Scholar] [CrossRef]
- Villacreses, G.; Gaona, G.; Martínez-Gómez, J.; Jijón, D.J. Wind Farms Suitability Location Using Geographical Information System (GIS), Based on Multi-Criteria Decision Making (MCDM) Methods: The Case of Continental Ecuador. Renew. Energy 2017, 109, 275–286. [Google Scholar] [CrossRef]
- Rezaei-Shouroki, M.; Mostafaeipour, A.; Qolipour, M. Prioritizing of Wind Farm Locations for Hydrogen Production: A Case Study. Int. J. Hydrog. Energy 2017, 42, 9500–9510. [Google Scholar] [CrossRef]
- Urmee, T.; Md, A. Social, Cultural and Political Dimensions of off-Grid Renewable Energy Programs in Developing Countries. Renew. Energy 2016, 93, 159–167. [Google Scholar] [CrossRef]
- Rafique, M.M.; Rehman, S. National Energy Scenario of Pakistan–Current Status, Future Alternatives, and Institutional Infrastructure: An Overview. Renew. Sustain. Energy Rev. 2017, 69, 156–167. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to Renewable/Sustainable Energy Technologies Adoption: Indian Perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [Google Scholar] [CrossRef]
- Akella, A.K.; Saini, R.P.; Sharma, M.P. Social, Economical and Environmental Impacts of Renewable Energy Systems. Renew. Energy 2009, 34, 390–396. [Google Scholar] [CrossRef]
- Sooriyaarachchi, T.M.; Tsai, I.T.; El Khatib, S.; Farid, A.M.; Mezher, T. Job Creation Potentials and Skill Requirements in, PV, CSP, Wind, Water-to-Energy and Energy Efficiency Value Chains. Renew. Sustain. Energy Rev. 2015, 52, 653–668. [Google Scholar] [CrossRef]
- Choudhary, D.; Shankar, R. An STEEP-Fuzzy AHP-TOPSIS Framework for Evaluation and Selection of Thermal Power Plant Location: A Case Study from India. Energy 2012, 42, 510–521. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Kentel, E.; Duzgun, S. GIS-Based Environmental Assessment of Wind Energy Systems for Spatial Planning: A Case Study from Western Turkey. Renew. Sustain. Energy Rev. 2010, 14, 364–373. [Google Scholar] [CrossRef]
- Devine-Wright, P. Reconsidering Public Attitudes and Public Acceptance of Renewable Energy Technologies: A Critical Review. Architecture 2007, Working Paper. pp. 1–15. Available online: http://geography.exeter.ac.uk/beyond_nimbyism/deliverables/Reconsidering_public_acceptance.pdf (accessed on 19 July 2018).
- Neisani Samani, Z.; Karimi, M.; Alesheikh, A. A Novel Approach to Site Selection: Collaborative Multi-Criteria Decision Making through Geo-Social Network (Case Study: Public Parking). ISPRS Int. J. Geo-Inf. 2018, 7, 82. [Google Scholar] [CrossRef]
- Malik, M.M.; Abdallah, S.; Hussain, M. Assessing Supplier Environmental Performance: Applying Analytical Hierarchical Process in the United Arab Emirates Healthcare Chain. Renew. Sustain. Energy Rev. 2016, 55, 1313–1321. [Google Scholar] [CrossRef]
Name of Region | Longitude | Latitude |
---|---|---|
Gharo | 67.585 E | 24.742 N |
Nooriabad | 68.525 E | 25.894 N |
Jamshoro | 68.263 E | 25.433 N |
Keti bandar | 67.276 E | 24.941 N |
Hyderabad | 68.367 E | 25.367 N |
Talhar | 68.816 E | 24.883 N |
Shahbandar | 67.903 E | 24.165 N |
Sajawal | 68.071 E | 24.606 N |
Wind Class | Potential Class | Wind Potential (MW) | Land Area (km2) | Total Wind in the Selected Region (%) |
---|---|---|---|---|
3 | Moderate | 61,745 | 12,349 | 8.76 |
4 | Good | 23,200 | 4640 | 3.29 |
5 | Excellent | 3515 | 703 | 0.50 |
6 | Excellent | N/A | N/A | N/A |
7 | Excellent | N/A | N/A | N/A |
Total | 88,460 | 17,692 | 12.55 |
Class | Potential Class | Average Wind Speed (m/s) | Average Wind Power Density (w/m2) | ||||
---|---|---|---|---|---|---|---|
10 m | 30 m | 50 m | 10 m | 30 m | 50 m | ||
1 | Poor | 0–4.4 | 0–5.1 | 0–5.4 | 0–100 | 0–160 | 0–200 |
2 | Marginal | 4.4–5.1 | 5.1–5.9 | 5.4–6.2 | 100–150 | 160–240 | 200–300 |
3 | Moderate | 5.1–5.6 | 5.9–6.5 | 6.2–6.9 | 150–200 | 240–320 | 300–400 |
4 | Good | 5.6–6.0 | 6.5–7.0 | 6.9–7.4 | 200–250 | 320–400 | 400–500 |
5 | Excellent | 6.0–6.4 | 7.0–7.4 | 7.4–7.8 | 250–300 | 400–480 | 500–600 |
6 | Excellent | 6.4–7.0 | 7.4–8.2 | 7.8–8.6 | 300–400 | 480–640 | 600–800 |
7 | Excellent | >7 | 8.2–11 | >8.6 | >400 | 640–1600 | >800 |
No. | Selected Regions | Average Wind Speed (m/s) | Average Wind Power Density (w/m2) | ||||
---|---|---|---|---|---|---|---|
10 m | 30 m | 50 m | 10 m | 30 m | 50 m | ||
L1 | Gharo | 3.6 | 5.6 | 6.6 | 110 | 233 | 360 |
L2 | Nooriabad | 5.0 | 6.2 | 7.0 | 221 | 361 | 454 |
L3 | Jamshoro | 4.2 | 6.9 | 8.5 | 160 | 424 | 771 |
L4 | Ketibandar | 4.6 | 6.1 | 7.0 | 163 | 281 | 396 |
L5 | Hyderabad | 3.8 | 5.5 | 6.4 | 123 | 264 | 372 |
L6 | Talhar | 1.4 | 4.5 | 6.2 | 24 | 147 | 445 |
L7 | Shahbandar | 4.2 | 5.5 | 6.2 | 108 | 174 | 247 |
L8 | Sajawal | 2.4 | 5.0 | 6.4 | 34 | 146 | 299 |
Economic Factor | Environmental Factor | Technical Factor | Political Factor | Social Factor |
---|---|---|---|---|
Development cost [39,40] | Public health and community impact [41] | Wind data availability [27,42] | Government policies [43] | Effect on economic development of nearby areas [31] |
On-grid accessibility [29,30,31] | Wildlife and habitat impact [42] | Climate conditions [29] | Land acquisition [39,40] | Distance from residential areas [27,30,31] |
Road availability [28,29,30,31] | Area of flatland and without forest cover [27,29] | Skilled manpower availability [39,40] | Relocation and rehabilitation [42] | Effect on employment and agriculture [44] |
Social acceptance [43] |
Numerical Values | Verbal Definition (Comparing Factor X and Y) |
---|---|
1 | Equally important factors |
2 | Equally to moderate important |
3 | Moderate important |
4 | Moderately to strongly important |
5 | Strongly important |
6 | Strongly to very strongly important |
7 | Very strongly important |
8 | Very strongly to extremely important |
9 | Extremely important |
Reciprocals | Factor X is less important than factor Y |
Number | Random Index |
---|---|
1 | 0.00 |
2 | 0.00 |
3 | 0.058 |
4 | 0.90 |
5 | 1.12 |
6 | 1.24 |
7 | 1.32 |
8 | 1.41 |
9 | 1.45 |
10 | 1.49 |
Number | Linguistic Variables | TFNs |
---|---|---|
1 | Very Bad | (1,1,3) |
2 | Bad | (1,3,5) |
3 | Medium | (3,5,7) |
4 | Good | (5,7,9) |
5 | Very Good | (7,9,9) |
Classification | Number of Experts |
---|---|
University professor | 2 |
Energy expert | 1 |
Economic expert | 1 |
Stakeholder | 1 |
Item Number | Factor Loading | % of Variance Explained | Cumulative % Age of Variance Explained |
---|---|---|---|
Factor 1: Economic Factor (EF) | 13.584 | 13.584 | |
Development cost (EF1) | 0.881 | ||
On-grid accessibility (EF2) | 0.854 | ||
Road availability (EF3) | 0.769 | ||
Factor 2: Environmental Factor (EN) | 12.564 | 26.148 | |
Public health and community impact (EN1) | 0.822 | ||
Wildlife and habitat impact (EN2) | 0.697 | ||
Area of flatland and without forest cover (EN3) | 0.675 | ||
Factor 3: Technical Factor (TF) | 9.714 | 35.862 | |
Wind data availability (TF1) | 0.854 | ||
Climate conditions (TF2) | 0.813 | ||
Skilled manpower availability (TF3) | 0.644 | ||
Factor 4: Political factor (PF) | 8.889 | 44.751 | |
Government policies (PF1) | 0.820 | ||
Land acquisition (PF2) | 0.734 | ||
Relocation and rehabilitation (PF3) | 0.627 | ||
Factor 5: Social factor (SF) | 9.934 | 54.685 | |
Effect on economic development of nearby areas (SF1) | 0.933 | ||
Distance from residential areas (SF2) | 0.796 | ||
Effect on employment and agriculture (SF3) | 0.760 | ||
Social acceptance (SF4) | 0.734 |
No. | Region | Rank | |||
---|---|---|---|---|---|
L3 | Jamshoro | 15.498 | 0.564 | 0.035 | 1 |
L5 | Hyderabad | 15.554 | 0.494 | 0.031 | 2 |
L2 | Nooriabad | 15.562 | 0.487 | 0.030 | 3 |
L1 | Gharo | 15.573 | 0.469 | 0.029 | 4 |
L4 | Ketibandar | 15.579 | 0.466 | 0.029 | 5 |
L7 | Shahbandar | 15.595 | 0.442 | 0.028 | 6 |
L8 | Sajawal | 15.615 | 0.420 | 0.026 | 7 |
L6 | Talhar | 15.625 | 0.407 | 0.025 | 8 |
Test | Definitions | Prioritizing Order | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | |||
1 | WEF1 = 0.50, WEF2-SF4 = 0.025 | 0.030 | 0.032 | 0.036 | 0.029 | 0.032 | 0.026 | 0.028 | 0.027 | L3 > L5 > L2 > L1 > L4 > L7 > L8 > L6 |
2 | WEF2 = 0.50, WEF1, EF3-SF4 = 0.025 | 0.029 | 0.031 | 0.036 | 0.029 | 0.033 | 0.025 | 0.028 | 0.026 | L3 > L5 > L2 > L1 > L4 > L7 > L8 > L6 |
3 | WEF3 = 0.50, WEF1-EF2, EN1-SF4 = 0.025 | 0.033 | 0.032 | 0.034 | 0.031 | 0.035 | 0.029 | 0.028 | 0.027 | L5 > L3 > L1 > L2 > L4 > L6 > L7 > L8 |
4 | WEN1 = 0.50, WEF1-EF3, EN2-SF4 = 0.025 | 0.031 | 0.033 | 0.037 | 0.032 | 0.034 | 0.032 | 0.029 | 0.028 | L3 > L5 > L2 > L6 > L4 > L1 > L7 > L8 |
5 | WEN2 = 0.50, WEF1-EN1, EN3-SF4 = 0.025 | 0.033 | 0.030 | 0.035 | 0.031 | 0.033 | 0.026 | 0.032 | 0.032 | L3 > L1 > L5 > L7 > L8 > L4 > L2 > L6 |
6 | WEN3 = 0.50, WEF1-EN2, TF1-SF4 = 0.025 | 0.033 | 0.032 | 0.036 | 0.030 | 0.033 | 0.032 | 0.035 | 0.030 | L3 > L7 > L5 > L1 > L6 > L2 > L8 > L4 |
7 | WTF1 = 0.50, WEF1-EN3, TF2-SF4 = 0.025 | 0.032 | 0.034 | 0.038 | 0.033 | 0.035 | 0.029 | 0.030 | 0.030 | L3 > L5 > L2 > L4 > L1 > L8 > L7 > L6 |
8 | WTF2 = 0.50, WEF1-TF1, TF3-SF4 = 0.025 | 0.033 | 0.036 | 0.038 | 0.033 | 0.035 | 0.029 | 0.027 | 0.029 | L3 > L2 > L5 > L1 > L4 > L8 > L6 > L7 |
9 | WTF3 = 0.50, WEF1-TF2, PF1-SF4 = 0.025 | 0.028 | 0.036 | 0.037 | 0.034 | 0.036 | 0.027 | 0.033 | 0.032 | L3 > L5 > L2 > L4 > L7 > L8 > L1 > L6 |
10 | WPF1 = 0.50, WEF1-TF3, PF2-SF4 = 0.025 | 0.028 | 0.032 | 0.035 | 0.031 | 0.031 | 0.032 | 0.033 | 0.029 | L3 > L7 > L6 > L5 > L2 > L4 > L8 > L1 |
11 | WPF2 = 0.50, WEF1-PF1, PF3-SF4 = 0.025 | 0.036 | 0.032 | 0.039 | 0.034 | 0.036 | 0.033 | 0.031 | 0.031 | L3 > L1 > L5 > L4 > L6 > L2 > L7 > L8 |
12 | WPF3 = 0.50, WEF1-PF2, SF1-SF4 = 0.025 | 0.035 | 0.037 | 0.041 | 0.035 | 0.036 | 0.034 | 0.033 | 0.032 | L3 > L2 > L5 > L4 > L1 > L6 > L7 > L8 |
13 | WSF1 = 0.50, WEF1-PF3, SF2-SF4 = 0.025 | 0.035 | 0.037 | 0.036 | 0.034 | 0.038 | 0.026 | 0.033 | 0.031 | L5 > L2 > L3 > L1 > L4 > L7 > L8 > L6 |
14 | WSF2 = 0.50, WEF1-SF1, SF3-SF4 = 0.025 | 0.034 | 0.037 | 0.035 | 0.034 | 0.036 | 0.030 | 0.030 | 0.033 | L2 > L5 > L3 > L1 > L4 > L8 > L6 > L7 |
15 | WSF3 = 0.50, WEF1-SF2, SF4 = 0.025 | 0.036 | 0.035 | 0.034 | 0.036 | 0.040 | 0.032 | 0.030 | 0.030 | L5 > L1 > L4 > L2 > L3 > L6 > L7 > L8 |
16 | WSF4 = 0.50, WEF1-SF3 = 0.025 | 0.038 | 0.039 | 0.040 | 0.035 | 0.036 | 0.027 | 0.029 | 0.028 | L3 > L2 > L1 > L5 > L4 > L7 > L8 > L6 |
17 | WEF1-SF4 = 0.0505 | 0.037 | 0.039 | 0.043 | 0.036 | 0.040 | 0.029 | 0.034 | 0.033 | L3 > L5 > L2 > L1 > L4 > L7 > L8 > L6 |
18 | WEF1-PF2 = 0.0808, WPF3-SF4 = 0 | 0.036 | 0.034 | 0.039 | 0.035 | 0.036 | 0.031 | 0.032 | 0.033 | L3 > L1 > L5 > L4 > L2 > L8 > L7 > L6 |
19 | WEF1-PF2 = 0, WPF3-SF4 = 0.20 | 0.029 | 0.034 | 0.031 | 0.028 | 0.030 | 0.029 | 0.032 | 0.032 | L2 > L8 > L7 > L3 > L5 > L6 > L1 > L4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solangi, Y.A.; Tan, Q.; Khan, M.W.A.; Mirjat, N.H.; Ahmed, I. The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application. Energies 2018, 11, 1940. https://doi.org/10.3390/en11081940
Solangi YA, Tan Q, Khan MWA, Mirjat NH, Ahmed I. The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application. Energies. 2018; 11(8):1940. https://doi.org/10.3390/en11081940
Chicago/Turabian StyleSolangi, Yasir Ahmed, Qingmei Tan, Muhammad Waris Ali Khan, Nayyar Hussain Mirjat, and Ifzal Ahmed. 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application" Energies 11, no. 8: 1940. https://doi.org/10.3390/en11081940
APA StyleSolangi, Y. A., Tan, Q., Khan, M. W. A., Mirjat, N. H., & Ahmed, I. (2018). The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application. Energies, 11(8), 1940. https://doi.org/10.3390/en11081940