Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Inoculum
2.2. Experimental setup for Batch Tests
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Feedstock and Inoculum Characteristics
3.2. Thermophilic Anaerobic Digestion of Individual Waste Substrates
3.3. Effect of Codigestion on Methane Yield and Digester Performance
3.4. Effect of Codigestion on Process Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Nomenclature
FW | Food wastes |
LW | Lignocellulosic wastes |
CS | Corn Stover |
PCG | Prairie cordgrass |
UBP | Unbleached paper |
AD | Anaerobic digestion |
VFA | Volatile Fatty acids |
C/N | Carbon to nitrogen |
TAD | Thermophilic anaerobic digestion |
VS | Volatile solids |
TS | Total solids |
TMC | Thermophilic methanogenic consortia |
References
- Qian, Y.; Sun, S.; Ju, D.; Shan, X.; Lu, X. Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renew. Sustain. Energy Rev. 2017, 69, 50–58. [Google Scholar] [CrossRef]
- Börjesson, P.; Mattiasson, B. Biogas as a resource-efficient vehicle fuel. Trends Biotechnol. 2008, 26, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Hengeveld, E.J.; van Gemert, W.J.T.; Bekkering, J.; Broekhuis, A.A. When does decentralized production of biogas and centralized upgrading and injection into the natural gas grid make sense? Biomass Bioenergy 2014, 67, 363–371. [Google Scholar] [CrossRef]
- Ptak, M.; Koziołek, S.; Derlukiewicz, D.; Słupiński, M.; Mysior, M. Analysis of the Use of Biogas as Fuel for Internal Combustion Engines. In Proceedings of the 13th International Scientific Conference, Wrocław, Poland, 22–24 June 2016; Rusiński, E., Pietrusiak, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 441–450. [Google Scholar]
- Dahl, R. A Second Life for Scraps: Making Biogas from Food Waste. Environ. Health Perspect. 2015, 123, A180–A183. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Park, K.-J.; Yoon, H.-S. Methane Production Potential of Food Waste and Food Waste Mixture with Swine Manure in Anaerobic Digestion. J. Biosyst. Eng. 2012, 37, 100–105. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Staley, B.F.; de los Reyes, F.L.; Barlaz, M.A. Effect of Spatial Differences in Microbial Activity, pH, and Substrate Levels on Methanogenesis Initiation in Refuse. Appl. Environ. Microbiol. 2011, 77, 2381–2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Okoh, A.I.; Makaka, G.; Simon, M. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy. Int. J. Environ. Res. Public Health 2013, 10, 4390–4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zuo, J.; Gan, L.; Li, P.; Liu, F.; Wang, K.; Chen, L.; Gan, H. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 2011, 23, 1403–1408. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Fitamo, T.; Boldrin, A.; Boe, K.; Angelidaki, I.; Scheutz, C. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors. Bioresour. Technol. 2016, 206, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata-Alvarez, J.; Dosta, J.; Macé, S.; Astals, S. Codigestion of solid wastes: A review of its uses and perspectives including modeling. Crit. Rev. Biotechnol. 2011, 31, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Esposito, G.; Frunzo, L.; Panico, A.; d’Antonio, G. Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge. Water Sci. Technol. 2008, 58, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, X.; Li, F.; Yang, G. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition. PLoS ONE 2014, 9, e97265. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wu, Y.; Yu, Z.; Zhang, X.; Li, H.; Gao, M. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour. Technol. 2006, 97, 1964–1968. [Google Scholar] [CrossRef] [PubMed]
- Zabed, H.; Sahu, J.N.; Boyce, A.N.; Faruq, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 2016, 66, 751–774. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review. Bioengineering 2016, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Bellasio, M.; Mattanovich, D.; Sauer, M.; Marx, H. Organic acids from lignocellulose: Candida lignohabitans as a new microbial cell factory. J. Ind. Microbiol. Biotechnol. 2015, 42, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Revathi, K.; Khanna, S. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohydr. Polym. 2015, 134 (Suppl. C), 761–766. [Google Scholar] [CrossRef] [PubMed]
- The National Petroleum Council. Renewable Natural Gas for Transportation: An Overview of the Feedstock Capacity, Economics, and GHG Emission Reduction Benefits of RNG as a Low-Carbon Fuel; The National Petroleum Council: Washington, DC, USA, 2013; p. 44. [Google Scholar]
- (EIA), U.S. Energy Information Administration. Monthly Energy Review: Energy Consumption by Sector; U.S. Energy Information Administration: Washington, DC, USA, 2013.
- Valentine, J.; Clifton-Brown, J.; Hastings, A.; Robson, P.; Allison, G.; Smith, P. Food vs. fuel: The use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 2012, 4, 1–19. [Google Scholar] [CrossRef]
- Awais, M.; Alvarado-Morales, M.; Tsapekos, P.; Gulfraz, M.; Angelidaki, I. Methane Production and Kinetic Modeling for Co-digestion of Manure with Lignocellulosic Residues. Energy Fuels 2016, 30, 10516–10523. [Google Scholar] [CrossRef]
- Kabir, M.M.; del Pilar Castillo, M.; Taherzadeh, M.J.; Sárvári Horváth, I. Effect of the N-Methylmorpholine-N-Oxide (NMMO) Pretreatment on Anaerobic Digestion of Forest Residues. BioResources 2013, 8, 5409–5423. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Brown, D.; Li, Y. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour. Technol. 2013, 127, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Y. Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour. Technol. 2012, 118, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, M.; Zeshan; Yousaf, S.; Haider, M.R.; Malik, R.N. High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. Int. Biodeterior. Biodegr. 2015, 102, 149–153. [Google Scholar] [CrossRef]
- Mulat, D.G.; Huerta, S.G.; Kalyani, D.; Horn, S.J. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. Biotechnol. Biofuels 2018, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; p. 177. [Google Scholar]
- Lloret, E.; Pastor, L.; Pradas, P.; Pascual, J.A. Semi full-scale thermophilic anaerobic digestion (TAnD) for advanced treatment of sewage sludge: Stabilization process and pathogen reduction. Chem. Eng. J. 2013, 232, 42–50. [Google Scholar] [CrossRef]
- Haider, M.R.; Zeshan; Yousaf, S.; Malik, R.N.; Visvanathan, C. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour. Technol. 2015, 190, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, R.; Liu, X.; Chen, C.; Xiao, X.; Feng, L.; He, Y.; Liu, G. Evaluating Methane Production from Anaerobic Mono- and Co-digestion of Kitchen Waste, Corn Stover, and Chicken Manure. Energy Fuels 2013, 27, 2085–2091. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.; Li, X.; Zheng, M.; Chen, J.; Zhang, Z. The Influence of Inoculum Sources on Anaerobic Biogasification of NaOH-treated Corn Stover. Energy Sources Part A 2010, 33, 138–144. [Google Scholar] [CrossRef]
- Pommier, S.; Llamas, A.M.; Lefebvre, X. Analysis of the outcome of shredding pretreatment on the anaerobic biodegradability of paper and cardboard materials. Bioresour. Technol. 2010, 101, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.S.; Shrestha, N.; David, A.; Basotra, N.; Johnson, G.R.; Chadha, B.S.; Gadhamshetty, V.; Sani, R.K. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes. Bioresour. Technol. 2018, 258, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.W.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory: Golden, CO, USA, 2008.
- Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 2009, 100, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Dhar, H.; Kumar, P.; Kumar, S.; Mukherjee, S.; Vaidya, A.N. Effect of organic loading rate during anaerobic digestion of municipal solid waste. Bioresour. Technol. 2016, 217, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Bibra, M.; Kumar, S.; Wang, J.; Bhalla, A.; Salem, D.R.; Sani, R.K. Single pot bioconversion of prairie cordgrass into biohydrogen by thermophiles. Bioresour. Technol. 2018, 266, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lee, Y.-W.; Jahng, D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour. Technol. 2011, 102, 5048–5059. [Google Scholar] [CrossRef] [PubMed]
- Tanimu, I.; Mohd Ghazi, T.; Razif Harun, M.; Idris, A. Effect of Carbon to Nitrogen Ratio of Food Waste on Biogas Methane Production in a Batch Mesophilic Anaerobic Digester. Int. J. Innovation Technol. 2014, 5, 116–119. [Google Scholar]
- Zhai, N.; Zhang, T.; Yin, D.; Yang, G.; Wang, X.; Ren, G.; Feng, Y. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag. 2015, 38, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Mao, C.; Zhai, N.; Wang, X.; Yang, G. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag. 2015, 35, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Zainab Ziad Ismail, A.R.T. Assessment of anaerobic co-digestion of agro wastes for biogas recovery: A bench scale application to date palm wastes. Int. J. Energy Environ. 2014, 5, 591–600. [Google Scholar]
- Tong, X.; Smith, L.H.; McCarty, P.L. Methane fermentation of selected lignocellulosic materials. Biomass 1990, 21, 239–255. [Google Scholar] [CrossRef]
- Ge, X.; Xu, F.; Li, Y. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresour. Technol. 2016, 205, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiralipour, A.; Smith, P.H. Conversion of biomass into methane gas. Biomass 1984, 6, 85–92. [Google Scholar] [CrossRef]
- Schmidt, T.; Pröter, J.; Scholwin, F.; Nelles, M. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems. Biomass Bioenergy 2013, 55, 285–290. [Google Scholar] [CrossRef]
- Ferguson, R.M.W.; Coulon, F.; Villa, R. Organic loading rate: A promising microbial management tool in anaerobic digestion. Water Res. 2016, 100, 348–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantrell, K.B.; Ducey, T.; Ro, K.S.; Hunt, P.G. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 2008, 99, 7941–7953. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Frunzo, L.; Giordano, A.; Liotta, F.; Panico, A.; Pirozzi, F. Anaerobic co-digestion of organic wastes. Rev. Env. Sci. Biotechnol. 2012, 11, 325–341. [Google Scholar] [CrossRef]
- Ahring, B.K. Methanogenesis in thermophilic biogas reactors. Antonie Leeuwenhoek 1995, 67, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Labatut, R.A.; Gooch, C.A. Monitoring of Anaerobic Digestion Process to Optimize Performance and Prevent System Failure; Department of Biological and Environmental Engineering, Cornell University: Ithaca, NY, USA, 2014. [Google Scholar]
Components | Composition (g/L) |
---|---|
K2HPO4 | 0.30 |
KH2PO4 | 0.30 |
NaCl | 0.10 |
CaCl2 | 0.05 |
NH4Cl | 1.00 |
MgCl2·6H2O | 0.50 |
KCl | 0.30 |
Cysteine.HCl | 0.50 |
Yeast extract | 0.05 |
Na2S·9H2O | 0.003 |
NaHCO3 | 20 mM |
Nitsch trace element | 2.5 mL |
Individual Substrate Type | Food Waste (FW) | Corn Stover (CS) | Prairie Cordgrass (PCG) | Unbleached Paper (UBP) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic Loading (%) s | 1% | 2.5% | 5% | 10% | 1% | 2.5% | 5% | 10% | 1% | 2.5% | 5% | 10% | 1% | 2.5% | 5% | 10% |
Composition (g VS) | 2 | 5 | 10 | 20 | 2 | 5 | 10 | 20 | 2 | 5 | 10 | 20 | 2 | 5 | 10 | 20 |
Test Bottles | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|
Composition | FW | FW + CS | FW + PCG | FW + UBP | FW + PCG + CS | FW + PCG + UBP | FW + UBP + CS |
FW (g VS) | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
CS (g VS) | - | 1.5 | - | - | 0.75 | - | 0.75 |
PCG (g VS) | - | - | 1.5 | - | 0.75 | 0.75 | - |
UBP (g VS) | - | - | - | 1.5 | - | 0.75 | 0.75 |
Mixing Ratio | - | 5:3 | 5:3 | 5:3 | 5:1.5:1.5 | 5:1.5:1.5 | 5:1.5:1.5 |
C:N | 19:1 | 23.9 | 25.6 | 28.2 | 24.4 | 26.8 | 25.6 |
Parameters | Inoculum | FW | CS | PCG | UBP |
---|---|---|---|---|---|
TS (% w/w) | 8.3 | 15.2 | 94.3 | 87.6 | 96.2 |
VS (% w/w) b | 6.1 | 13.8 | 92.6 | 76.9 | 84.7 |
Ash (% w/w) b | 93.9 | 86.2 | 7.4 | 23.1 | 15.3 |
VS/TS (%) | 37.2 | 90.8 | 98.2 | 87.8 | 88.0 |
C:N c | 2.7 | 13:1 | 55:1 | 41:1 | 124:1 |
VFA/alkalinity | 1.3 | ND | ND | ND | ND |
Lignin (%) b | ND | ND | 13.5 | 22.9 | 2.1 |
Cellulose (%) b | ND | ND | 38.2 | 30.3 | 84.5 |
Hemicellulose (%) b | ND | ND | 32.4 | 25.7 | 11.2 |
Test Bottles | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|
Methane yield (L·kg−1 VS) | 159.8 ± 2.4 | 251.9 ± 26.6 | 279.3 ± 7.2 | 177.5 ± 16.1 | 305.4 ± 23.8 | 243.6 ± 20.9 | 219.9 ± 10.9 |
VS reduction (%) | 44 ± 1.4 | 57.4 ± 2.7 | 58.0 ± 0.9 | 47.4 ± 1.8 | 68.5 ± 2.2 | 51.1 ± 2.6 | 49.8 ± 1.5 |
Initial pH | 7.1 ± 0.0 | 7.1 ± 0.2 | 7.2 ± 0.1 | 7.1 ± 0.1 | 7.2 ± 0.0 | 7.3 ± 0.3 | 7.3 ± 0.2 |
Final pH | 5.3 ± 0.0 | 6.8 ± 0.1 | 7.4 ± 0.2 | 5.8 ± 0.1 | 7.3 ± 0.2 | 6.8 ± 0.1 | 5.9 ± 0.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, A.; Govil, T.; Tripathi, A.K.; McGeary, J.; Farrar, K.; Sani, R.K. Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes. Energies 2018, 11, 2058. https://doi.org/10.3390/en11082058
David A, Govil T, Tripathi AK, McGeary J, Farrar K, Sani RK. Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes. Energies. 2018; 11(8):2058. https://doi.org/10.3390/en11082058
Chicago/Turabian StyleDavid, Aditi, Tanvi Govil, Abhilash Kumar Tripathi, Julie McGeary, Kylie Farrar, and Rajesh Kumar Sani. 2018. "Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes" Energies 11, no. 8: 2058. https://doi.org/10.3390/en11082058
APA StyleDavid, A., Govil, T., Tripathi, A. K., McGeary, J., Farrar, K., & Sani, R. K. (2018). Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes. Energies, 11(8), 2058. https://doi.org/10.3390/en11082058