SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS
Abstract
:1. Introduction
2. The Methodological Framework of SOLIS
2.1. The Conversion of Input Data
2.2. The Calculation of Solar Radiation
2.3. Post-Processing of the Results
3. The Verification of SOLIS
3.1. The SOLIS Interface
3.2. SOLIS Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development—A/RES/70/1. United Nations General Assembly 70th Session. 2015. Available online: http://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 6 July 2018).
- Hernik, J.; Rutkowska, A.; Noszczyk, T. Correlation between selected socioeconomic variables and the number of renewable energy sources in Świȩtokrzyskie Voivodeship (Poland). Eng. Rural Dev. 2016, 15, 498–504. [Google Scholar]
- Kazak, J.; Dziezyc, H.; Forys, I.; Szewranski, S. Indicator-based analysis of socially sensitive and territorially sustainable development in relation to household energy consumption. Eng. Rural Dev. 2018, 17, 1653–1661. [Google Scholar] [CrossRef]
- Maqbool, R. Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective. Energy 2018, 158, 944–956. [Google Scholar] [CrossRef]
- Boerenfijn, P.; Kazak, J.K.; Schellen, L.; van Hoof, J. A multi-case study of innovations in energy performance of social housing for older adults in the Netherlands. Energy Build. 2018, 158. [Google Scholar] [CrossRef]
- Van Hoof, J.; Boerenfijn, P. Re-inventing existing real estate of social housing for older people: Building a new de benring in Voorst, The Netherlands. Buildings 2018, 8, 89. [Google Scholar] [CrossRef]
- Skiba, M.; Mrówczyńska, M.; Bazan-Krzywoszańska, A. Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra. Appl. Energy 2017, 188, 356–366. [Google Scholar] [CrossRef]
- Woch, F.; Hernik, J.; Linke, H.; Sankowski, E.; Bęczkowska, M.; Noszczyk, T. Renewable energy and rural autonomy: A case study with generalizations. Pol. J. Environ. Stud. 2017, 26, 2823–2832. [Google Scholar] [CrossRef]
- Bazan-Krzywoszańska, A.; Mrówczyńska, M.; Skiba, M.; Łączak, A. Economic conditions for the development of energy efficient civil engineering using RES in the policy of cohesion of the European Union (2014–2020). Case study: The town of Zielona Gora. Energy Build. 2016, 118, 170–180. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Łączak, A.; Bazan-Krzywoszańska, A.; Skiba, M. Improving energy efficiency with the risk of investment of reference to urban development of Zielona Góra. Teh. Vjesn. 2018, 25, 916–922. [Google Scholar] [CrossRef]
- Moiz, A.; Kawasaki, A.; Koike, T.; Shrestha, M. A systematic decision support tool for robust hydropower site selection in poorly gauged basins. Appl. Energy 2018, 224, 309–321. [Google Scholar] [CrossRef]
- Bousquet, C.; Samora, I.; Manso, P.; Rossi, L.; Heller, P.; Schleiss, A.J. Assessment of hydropower potential in wastewater systems and application to Switzerland. Renew. Energy 2017, 113, 64–73. [Google Scholar] [CrossRef]
- Kazak, J.; van Hoof, J.; Szewranski, S. Challenges in the wind turbines location process in Central Europe—The use of spatial decision support systems. Renew. Sustain. Energy Rev. 2017, 76, 425–433. [Google Scholar] [CrossRef]
- Płuciennik, M.; Hełdak, M.; Szczepański, J.; Patrzałek, C. Application of spatial models in making location decisions of wind power plant in Poland. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072016. [Google Scholar] [CrossRef]
- Ranalli, J.; Calvert, K.; Bayrakci Boz, M.; Brownson, J.R.S. Toward comprehensive solar energy mapping systems for urban electricity system planning and development. Electr. J. 2018, 31, 8–15. [Google Scholar] [CrossRef]
- Hettinga, S.; Nijkamp, P.; Scholten, H. A multi-stakeholder decision support system for local neighbourhood energy planning. Energy Policy 2018, 116, 277–288. [Google Scholar] [CrossRef]
- Hussain Mirjat, N.; Uqaili, M.; Harijan, K.; Mustafa, M.; Rahman, M.; Khan, M. Multi-criteria analysis of electricity generation scenarios for sustainable energy planning in Pakistan. Energies 2018, 11, 757. [Google Scholar] [CrossRef]
- Hirzel, S.; Hettesheimer, T.; Viebahn, P.; Fischedick, M. A decision support system for public funding of experimental development in energy research. Energies 2018, 11, 1357. [Google Scholar] [CrossRef]
- Oprea, S.V.; Bâra, A. Analyses of wind and photovoltaic energy integration from the promoting scheme point of view: Study case of Romania. Energies 2017, 10, 2101. [Google Scholar] [CrossRef]
- Nyerges, T.; Ballal, H.; Steinitz, C.; Canfield, T.; Roderick, M.; Ritzman, J.; Thanatemaneerat, W. Geodesign dynamics for sustainable urban watershed development. Sustain. Cities Soc. 2016, 25, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Kazak, J.K. The use of a decision support system for sustainable urbanization and thermal comfort in adaptation to climate change actions—The case of the Wrocław larger urban zone (Poland). Sustainability 2018, 10, 1083. [Google Scholar] [CrossRef]
- Szewrański, S.; Chruściński, J.; van Hoof, J.; Kazak, J.; Świąder, M.; Tokarczyk-Dorociak, K.; Żmuda, R. A location intelligence system for the assessment of pluvial flooding risk and the identification of storm water pollutant sources from roads in suburbanised areas. Water 2018, 10, 746. [Google Scholar] [CrossRef]
- Wang, T.; Han, Q.; de Vries, B. A semi-automatic neighborhood rule discovery approach. Appl. Geogr. 2017, 88, 73–83. [Google Scholar] [CrossRef]
- Kazak, J.; Chalfen, M.; Kamińska, J.; Szewrański, S.; Świąder, M. Geo-dynamic decision support system for urban traffic management. In Dynamics in GIscience; Springer: Berlin, Germany, 2018; pp. 195–207. ISBN 978-3-319-61297-3. [Google Scholar]
- Wang, T.; Han, Q.; de Vries, B. SIRPSS—Sustainable Industrial Site Redevelopment Planning Support System. In Lecture Notes in Business Information Processing, Decision Support Systems VIII: Sustainable Data-Driven and Evidence-Based Decision Support; Springer: Berlin, Germany, 2018; pp. 3–14. [Google Scholar]
- Russo, P.; Lanzilotti, R.; Costabile, M.F.; Pettit, C.J. Towards satisfying practitioners in using Planning Support Systems. Comput. Environ. Urban Syst. 2018, 67, 9–20. [Google Scholar] [CrossRef]
- Świader, M.; Szewrański, S.; Kazak, J.K. Foodshed as an example of preliminary research for conducting environmental carrying capacity analysis. Sustainability 2018, 10, 882. [Google Scholar] [CrossRef]
- Szewrański, S.; Świąder, M.; Kazak, J.K.; Tokarczyk-Dorociak, K.; van Hoof, J. Socio-environmental vulnerability mapping for environmental and flood resilience assessment: The case of ageing and poverty in the city of Wrocław, Poland. Integr. Environ. Assess. Manag. 2018, 1–6. [Google Scholar] [CrossRef]
- Nicolau, E.; Sciences, A.; Medicine, V. Aspects of solar radiation analysis using ArcGis. Bull. UASVM Hortic. 2013, 70, 437–440. [Google Scholar]
- Nakata-Osaki, C.M.; Souza, L.C.L.; Rodrigues, D.S. THIS—Tool for Heat Island Simulation: A GIS extension model to calculate urban heat island intensity based on urban geometry. Comput. Environ. Urban Syst. 2018, 67, 157–168. [Google Scholar] [CrossRef]
- Szewrański, S.; Chruściński, J.; Kazak, J.; Świąder, M.; Tokarczyk-Dorociak, K.; Żmuda, R. Pluvial Flood Risk Assessment Tool (PFRA) for rainwater management and adaptation to climate change in newly urbanised areas. Water 2018, 10, 386. [Google Scholar] [CrossRef]
- Samela, C.; Albano, R.; Sole, A.; Manfreda, S. A GIS tool for cost-effective delineation of flood-prone areas. Comput. Environ. Urban Syst. 2018, 70, 43–52. [Google Scholar] [CrossRef]
- ESRI. Multipatches. Available online: http://desktop.arcgis.com/en/arcmap/10.3/guide-books/extensions/3d-analyst/multipatches.htm (accessed on 6 July 2018).
- ESRI. Area Solar Radiation. Available online: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/area-solar-radiation.htm (accessed on 6 July 2018).
- ESRI. Raster Bands. Available online: http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/raster-bands.htm (accessed on 6 July 2018).
- ESRI. Multipatch Footprint. Available online: http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/multipatch-footprint.htm (accessed on 6 July 2018).
- Hay, J.E.; Hanson, K.J. Evaluating the solar resource: A review of problems resulting from temporal, spatial and angular variations. Sol. Energy 1985, 34, 151–161. [Google Scholar] [CrossRef]
- Sowmy, S.D.; Schiavon Ara, P.J.; Prado, R.T.A. Uncertainties associated with solar collector efficiency test using an artificial solar simulator. Renew. Energy 2017, 108, 644–651. [Google Scholar] [CrossRef]
- De Almeida Rocha, A.P.; Goffart, J.; Houben, L.; Mendes, N. On the uncertainty assessment of incident direct solar radiation on building facades due to shading devices. Energy Build. 2016, 133, 295–304. [Google Scholar] [CrossRef]
- Geneletti, D.; Zardo, L. Ecosystem-based adaptation in cities: An analysis of European urban climate adaptation plans. Land Use Policy 2016, 50, 38–47. [Google Scholar] [CrossRef]
- Damsø, T.; Kjær, T.; Christensen, T.B. Local climate action plans in climate change mitigation—Examining the case of Denmark. Energy Policy 2016, 89, 74–83. [Google Scholar] [CrossRef]
- Kiełkowska, J.; Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S.; van Hoof, J. Urban adaptation to climate change plans and policies—The conceptual framework of a methodological approach. J. Ecol. Eng. 2018, 19. [Google Scholar] [CrossRef]
- Jaques, L.; Bradshaw, M.; Carson, L.; Budd, A.; Huleatt, M.; Hutchinson, D.; Lambert, I.; LePoidevin, S.; McKay, A.; Miezitis, Y.; et al. Solar energy. In Australian Energy Resource Assessment; Australian Government: Canberra, Australia, 2010; pp. 261–284. [Google Scholar]
- Asaleye, D.A.; Breen, M.; Murphy, M.D. A decision support tool for building integrated renewable energy microgrids connected to a smart grid. Energies 2017, 10, 1765. [Google Scholar] [CrossRef]
- Cristea, C.; Jocea, A.F. GIS Application for wind energy. Energy Procedia 2016, 85, 132–140. [Google Scholar] [CrossRef]
- Patlakas, P.; Koronaios, G.; Raslan, R.; Neighbour, G.; Altan, H. Case studies of environmental visualization. Energies 2017, 10, 1459. [Google Scholar] [CrossRef]
- Hay, J.E.; Suckling, P.W. An assessment of the networks for measuring and modelling solar radiation in British Columbia and adjacent areas of western Canada. Can. Geogr. Géographe Can. 1979, 23, 222–238. [Google Scholar] [CrossRef]
- Ohunakin, O.S.; Adaramola, M.S.; Oyewola, O.M.; Matthew, O.J.; Fagbenle, R.O. The effect of climate change on solar radiation in Nigeria. Sol. Energy 2015, 116, 272–286. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Kalbarczyk, E.; Ziemiańska, M.; Raszka, B. Assessment of air thermal conditions in the lowland part of south-western Poland for agriculture development purposes. Atmosphere 2018, 9, 215. [Google Scholar] [CrossRef]
- Marzo, A.; Trigo-Gonzalez, M.; Alonso-Montesinos, J.; Martínez-Durbán, M.; López, G.; Ferrada, P.; Fuentealba, E.; Cortés, M.; Batlles, F.J. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renew. Energy 2017, 113, 303–311. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Pawęska, K.; Dąbek, P.B.; Stodolak, R. The implications of economic development, climate change and European water policy on surface water quality threats. Acta Sci. Pol. Form. Circumiectus 2017, 16, 111–123. [Google Scholar] [CrossRef]
- Yang, S.; Pilet, T.J.; Ordonez, J.C. Volume element model for 3D dynamic building thermal modeling and simulation. Energy 2018, 148, 642–661. [Google Scholar] [CrossRef]
- Eicker, U.; Zirak, M.; Bartke, N.; Romero Rodríguez, L.; Coors, V. New 3D model based urban energy simulation for climate protection concepts. Energy Build. 2018, 163, 79–91. [Google Scholar] [CrossRef]
- Mekonnen, A.D.; Gorsevski, P.V. A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renew. Sustain. Energy Rev. 2015, 41, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Gobakis, K.; Mavrigiannaki, A.; Kalaitzakis, K.; Kolokotsa, D.D. Design and development of a Web based GIS platform for zero energy settlements monitoring. Energy Procedia 2017, 134, 48–60. [Google Scholar] [CrossRef]
- McCord, P.; Tonini, F.; Liu, J. The Telecoupling GeoApp: A Web-GIS application to systematically analyze telecouplings and sustainable development. Appl. Geogr. 2018, 96, 16–28. [Google Scholar] [CrossRef]
- Repetto, M.P.; Burlando, M.; Solari, G.; De Gaetano, P.; Pizzo, M.; Tizzi, M. A web-based GIS platform for the safe management and risk assessment of complex structural and infrastructural systems exposed to wind. Adv. Eng. Softw. 2018, 117, 29–45. [Google Scholar] [CrossRef]
- Ashkezari, A.D.; Hosseinzadeh, N.; Chebli, A.; Albadi, M. Development of an enterprise Geographic Information System (GIS) integrated with smart grid. Sustain. Energy Grids Netw. 2018, 14, 25–34. [Google Scholar] [CrossRef]
- Maguire, D.J.; Longley, P.A. The emergence of geoportals and their role in spatial data infrastructures. Comput. Environ. Urban Syst. 2005, 29, 3–14. [Google Scholar] [CrossRef]
- De Longueville, B. Community-based geoportals: The next generation? Concepts and methods for the geospatial Web 2.0. Comput. Environ. Urban Syst. 2010, 34, 299–308. [Google Scholar] [CrossRef]
- Lance, K.T.; Georgiadou, Y.P.; Bregt, A.K. Evaluation of the Dutch subsurface geoportal: What lies beneath? Comput. Environ. Urban Syst. 2011, 35, 150–158. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazak, J.K.; Świąder, M. SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS. Energies 2018, 11, 2105. https://doi.org/10.3390/en11082105
Kazak JK, Świąder M. SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS. Energies. 2018; 11(8):2105. https://doi.org/10.3390/en11082105
Chicago/Turabian StyleKazak, Jan K., and Małgorzata Świąder. 2018. "SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS" Energies 11, no. 8: 2105. https://doi.org/10.3390/en11082105
APA StyleKazak, J. K., & Świąder, M. (2018). SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS. Energies, 11(8), 2105. https://doi.org/10.3390/en11082105