Hybridizing Chaotic and Quantum Mechanisms and Fruit Fly Optimization Algorithm with Least Squares Support Vector Regression Model in Electric Load Forecasting
Abstract
:1. Introduction
1.1. Motivation
1.2. Relevant Literature Reviews
1.3. Contributions
- (1)
- QCM is employed to empower the search ability of each fruit fly during the searching processes of QFOA. The cat chaotic mapping function is introduced into QFOA and implements the chaotic global perturbation strategy to help a fruit fly escape from the local optima when the population’s diversity is poor.
- (2)
- We propose a novel hybrid optimization algorithm, namely CQFOA, to be hybridized with an LS-SVR model, namely the LS-SVR-CQFOA model, to conduct the MEL forecasting. Other similar alternative hybrid algorithms (hybridizing chaotic mapping function, QCM, and evolutionary algorithms) in existing papers, such as the CQPSO algorithm used by Huang [36], the CQTS and CQGA algorithms used by Lee and Lin [37,38], and the CQBA algorithm used by Li et al. [39], are selected as alternative models to test the superiority of the LS-SVR-CQFOA model in terms of forecasting accuracy.
- (3)
- The forecasting results illustrate that, in three datasets, the proposed LS-SVR-CQFOA model is superior to other alternative models in terms of forecasting accuracy indexes; in addition, it passes the significance test at a 97.5% confidence level.
1.4. The Organization of This Paper
2. Materials and Methods
2.1. Least Squares Support Vector Regression (LS-SVR)
2.1.1. Principle of the Standard SVR Model
2.1.2. Principle of the LS-SVR Model
2.2. Chaotic Quantum Fruit Fly Algorithm (CQFOA)
2.2.1. Fruit Fly Optimization Algorithm (FOA)
- Step 1. Initialize randomly the fruit flies’ location ( and ) of population.
- Step 2. Give individual fruit flies the random direction and distance for searching for food by smell, as in Equations (8) and (9) [26]:
- Step 4. The determination value of taste concentration (S) is substituted into the determination function of taste concentration (or Fitness function) to determine the individual position of the fruit fly (), as shown in Equation (12) [26]:
- Step 5. Find the Drosophila species (Best index and Best Smell values) with the highest odor concentrations in this population, as in Equation (13) [26]:
- Step 6. The optimal flavor concentration value (Optimal_Smell) is retained along with the x and y coordinates (with Best_index) as in Equations (14)–(16) [25], then the Drosophila population uses vision to fly to this position.
- Step 7. Enter the iterative optimization, repeat Steps 2 to 5 and judge whether the flavor concentration is better than that of the previous iteration; if so, go back to Step 6.
2.2.2. Quantum Computing Mechanism for FOA
2.2.3. Chaotic Quantum Global Perturbation
- (1)
- Generate 2popsize chaotic disturbance fruit flies. For each (I = 1, 2, …, 2popsize), Equation (24) is applied to generate d random numbers, , j = 1, 2, …, d. Then, the qubit (with quantum state, ) amplitude, , of is shown in Equation (25):
- (2)
- Select 0.5 popsize better chaotic disturbance fruit flies. Compute the fitness value of each from 2 popsize chaotic disturbance fruit flies, and arrange these fruit flies to be a sequence based on the order of fitness values. Then, select the fruit flies with 0.5 popsize ranking ahead in the fitness values; as a result, the 0.5 popsize better chaotic disturbance fruit flies are obtained.
- (3)
- Determine 0.5 popsize current fruit flies with better fitness. Compute the fitness value of each from current QFOA, and arrange these fruit flies to be a sequence based on the order of fitness values. Then, select the fruit flies with 0.5 popsize ranking ahead in the fitness values.
- (4)
- Form the new CQFOA population. Mix the 0.5 popsize better chaotic disturbance fruit flies with 0.5 popsize current fruit flies with better fitness from current QFOA, and form a new population that contains new 1popsize fruit flies, and name it the new CQFOA population.
- (5)
- Complete global chaotic perturbation. After obtaining the new population of CQFOA, take it as the new population of QFOA and continue to execute the QFOA process.
2.2.4. Implementation Steps of CQFOA
- Step 1. Initialization. The population size of quantum Drosophila is 1 popsize; the maximum number of iterations is Gen-max; the random search radius is R; and the chaos disturbance control coefficient is .
- Step 2. Random searching. For quantum rotation angle, , of a random search, according to the quantum rotation angle, fruit fly locations on each dimension are updated, and then, a quantum revolving door is applied to update the quantum sequence, as shown in Equations (26) and (27) [34,35]:
- Step 3. Calculating fitness. Mapping each Drosophila location, , to the feasible domain of an LS-SVR model parameters to receive the parameters, . The training data are used to complete the training processes of the model and calculate the forecasting value in the training stage corresponding to each set of parameters. Then, the forecasting error is calculated as in Equation (12) of CQFOA by the mean absolute percentage error (MAPE), as shown in Equation (28):
- Step 4. Choosing the current optimum. Calculate the taste concentration of fruit fly, , by using Equation (12), and find the best flavor concentration of individual, , by Equation (13), as the optimal fitness value.
- Step 5. Updating global optimization. Compare whether the contemporary odor concentration, , is better than the global optima, . If so, update the global value by Equation (14), and enable the individual quantum fruit fly to fly to the optimal position with vision, as in Equations (29) and (30), then go to Step 6. Otherwise, go to Step 6 directly.
- Step 6. Global chaos perturbation judgment. If the distance from the last disturbance is equal to , go to Step 7; otherwise, go to Step 8.
- Step 7. Global chaos perturbation operations. Based on the current population, conduct the global chaos perturbation algorithm to obtain the new CQFOA population. Then, take the new CQFOA population as the new population of QFOA, and continue to execute the QFOA process.
- Step 8. Iterative refinements. Determine whether the current population satisfies the condition of evolutionary termination. If so, stop the optimization process and output the optimal results. Otherwise, repeat Steps 2 to 8.
3. Forecasting Results
3.1. Dataset of Experimental Examples
3.2. Forecasting Accuracy Indexes and Performance Tests
3.2.1. Forecasting Accuracy Index
3.2.2. Forecasting Performance Improvement Tests
3.3. The Forecasting Results of the LS-SVR-CQFOA Model
3.3.1. Parameter Setting of the CQFOA Algorithm
3.3.2. Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maçaira, P.M.; Souza, R.C.; Oliveira, F.L.C. Modelling and forecasting the residential electricity consumption in Brazil with pegels exponential smoothing techniques. Procedia Comput. Sci. 2015, 55, 328–335. [Google Scholar] [CrossRef]
- Pappas, S.S.; Ekonomou, L.; Karampelas, P.; Karamousantas, D.C.; Katsikas, S.K.; Chatzarakis, G.E.; Skafidas, P.D. Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electr. Power Syst. Res. 2010, 80, 256–264. [Google Scholar] [CrossRef]
- Dudek, G. Pattern-based local linear regression models for short-term load forecasting. Electr. Power Syst. Res. 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Chen, Y.; Luh, P.B.; Guan, C.; Zhao, Y.; Michel, L.D.; Coolbeth, M.A.; Friedland, P.B.; Rourke, S.J. Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Trans. Power Syst. 2010, 25, 322–330. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Goel, L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr. Power Syst. Res. 2015, 122, 96–103. [Google Scholar] [CrossRef]
- Fan, G.F.; Wang, A.; Hong, W.C. Combining grey model and self-adapting intelligent grey model with genetic algorithm and annual share changes in natural gas demand forecasting. Energies 2018, 11, 1625. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Z. Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China. J. Comput. Appl. Math. 2017, 324, 17–24. [Google Scholar] [CrossRef]
- Lou, C.W.; Dong, M.C. A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting. Int. J. Electr. Power Energy Syst. 2015, 73, 34–44. [Google Scholar] [CrossRef]
- Ertugrul, Ö.F. Forecasting electricity load by a novel recurrent extreme learning machines approach. Int. J. Electr. Power Energy Syst. 2016, 78, 429–435. [Google Scholar] [CrossRef]
- Geng, J.; Huang, M.L.; Li, M.W.; Hong, W.C. Hybridization of seasonal chaotic cloud simulated annealing algorithm in a SVR-based load forecasting model. Neurocomputing 2015, 151, 1362–1373. [Google Scholar] [CrossRef]
- Hooshmand, R.A.; Amooshahi, H.; Parastegari, M. A hybrid intelligent algorithm Based short-term load forecasting approach. Int. J. Electr. Power Energy Syst. 2013, 45, 313–324. [Google Scholar] [CrossRef]
- Niu, D.X.; Shi, H.; Wu, D.D. Short-term load forecasting using Bayesian neural networks learned by hybrid Monte Carlo algorithm. Appl. Soft Comput. 2012, 12, 1822–1827. [Google Scholar] [CrossRef]
- Hanmandlu, M.; Chauhan, B.K. Load forecasting using hybrid models. IEEE Trans. Power Syst. 2011, 26, 20–29. [Google Scholar] [CrossRef]
- Mahmoud, T.S.; Habibi, D.; Hassan, M.Y.; Bass, O. Modelling self-optimised short term load forecasting for medium voltage loads using tunning fuzzy systems and artificial neural networks. Energy Convers. Manag. 2015, 106, 1396–1408. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J.; De Moor, B. Optimal control by least squares support vector machines. Neural Netw. 2001, 14, 23–35. [Google Scholar] [CrossRef]
- Sankar, R.; Sapankevych, N.I. Time series prediction using support vector machines: A survey. IEEE Comput. Intell. Mag. 2009, 4, 24–38. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Hong, W.C. Electric load forecasting by seasonal recurrent LS-SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy 2011, 36, 5568–5578. [Google Scholar] [CrossRef]
- Fan, G.F.; Peng, L.L.; Zhao, X.; Hong, W.C. Applications of hybrid EMD with PSO and GA for an SVR-based load forecasting model. Energies 2017, 10, 1713. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vanddewalle, J. Least squares support vector machines classifiers. Neural Netw. Lett. 1999, 19, 293–300. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J. A robust combination approach for short-term wind speed forecasting and analysis—Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 2015, 93, 41–56. [Google Scholar]
- Hong, W.C.; Dong, Y.; Zhang, W.; Chen, L.Y.; Panigrahi, B.K. Cyclic electric load forecasting by seasonal LS-SVR with chaotic genetic algorithm. Int. J. Electr. Power Energy Syst. 2013, 44, 604–614. [Google Scholar] [CrossRef]
- Ju, F.Y.; Hong, W.C. Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting. Appl. Math. Model. 2013, 37, 9643–9651. [Google Scholar] [CrossRef]
- Fan, G.; Peng, L.L.; Hong, W.C.; Sun, F. Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing 2016, 173, 958–970. [Google Scholar] [CrossRef]
- Pan, W.T. Fruit Fly Optimization Algorithm; Tsanghai Publishing: Taipei, Taiwan, China, 2011. [Google Scholar]
- Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Mitić, M.; Vuković, N.; Petrović, M.; Miljković, Z. Chaotic fruit fly optimization algorithm. Knowl.-Based Syst. 2015, 89, 446–458. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Q.; Tian, X.; Zhang, J.; Xiao, W. A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems. Knowl.-Based Syst. 2018, 144, 153–173. [Google Scholar] [CrossRef]
- Han, X.; Liu, Q.; Wang, H.; Wang, L. Novel fruit fly optimization algorithm with trend search and co-evolution. Knowl.-Based Syst. 2018, 141, 1–17. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, X.; Jia, S.; Li, X. A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning. Appl. Soft Comput. 2018, 70, 371–388. [Google Scholar] [CrossRef]
- Han, S.Z.; Pan, W.T.; Zhou, Y.Y.; Liu, Z.L. Construct the prediction model for China agricultural output value based on the optimization neural network of fruit fly optimization algorithm. Future Gener. Comput. Syst. 2018, 86, 663–669. [Google Scholar] [CrossRef]
- Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Narayanan, A.; Moore, M. Quantum-inspired genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 61–66. [Google Scholar]
- Han, K.H.; Kim, J.H. Genetic quantum algorithm and its application to combinatorial optimization problem. In Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; pp. 1354–1360. [Google Scholar]
- Han, K.H.; Kim, J.H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 2002, 6, 580–593. [Google Scholar] [CrossRef]
- Huang, M.L. Hybridization of chaotic quantum particle swarm optimization with SVR in electric demand forecasting. Energies 2016, 9, 426. [Google Scholar] [CrossRef]
- Lee, C.W.; Lin, B.Y. Application of hybrid quantum tabu search with support vector regression for load forecasting. Energies 2016, 9, 873. [Google Scholar] [CrossRef]
- Lee, C.W.; Lin, B.Y. Applications of the chaotic quantum genetic algorithm with support vector regression in load forecasting. Energies 2017, 10, 1832. [Google Scholar] [CrossRef]
- Li, M.W.; Geng, J.; Wang, S.; Hong, W.C. Hybrid chaotic quantum bat algorithm with SVR in electric load forecasting. Energies 2017, 10, 2180. [Google Scholar] [CrossRef]
- Shi, D.Y.; Lu, L.J. A judge model of the impact of lane closure incident on individual vehicles on freeways based on RFID technology and FOA-GRNN method. J. Wuhan Univ. Technol. 2012, 34, 63–68. [Google Scholar]
- Yuan, X.; Wang, P.; Yuan, Y.; Huang, Y.; Zhang, X. A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem. Energy Convers. Manag. 2015, 100, 1–9. [Google Scholar] [CrossRef]
- Peng, A.N. Particle swarm optimization algorithm based on chaotic theory and adaptive inertia weight. J. Nanoelectron. Optoelectron. 2017, 12, 404–408. [Google Scholar] [CrossRef]
- Li, M.W.; Geng, J.; Hong, W.C.; Chen, Z.Y. A novel approach based on the Gauss-vLS-SVR with a new hybrid evolutionary algorithm and input vector decision method for port throughput forecasting. Neural Comput. Appl. 2017, 28, S621–S640. [Google Scholar] [CrossRef]
- Li, M.W.; Hong, W.C.; Geng, J.; Wang, J. Berth and quay crane coordinated scheduling using chaos cloud particle swarm optimization algorithm. Neural Comput. Appl. 2017, 28, 3163–3182. [Google Scholar] [CrossRef]
- Xiong, Y. Study on Short-Term Micro-Grid Load Forecasting Based on IGA-PSO RBF Neural Network. Master’s Thesis, South China University of Technology, Guangzhou, China, 2016. [Google Scholar]
- Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. Int. J. Forecast. 2016, 32, 896–913. [Google Scholar] [CrossRef]
- Hong, W.C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. Appl. 2012, 21, 583–593. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 134–144. [Google Scholar]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
Time | 14 July | 15 July | 16 July | 17 July | 18 July | 19 July | 20 July |
---|---|---|---|---|---|---|---|
01:00 | 0.1617 | 0.1245 | 0.1526 | 0.2246 | 0.1870 | 0.3354 | 0.3669 |
02:00 | 0.0742 | 0.0000 | 0.0826 | 0.1590 | 0.1386 | 0.1924 | 0.1878 |
03:00 | 0.0000 | 0.0109 | 0.0000 | 0.0395 | 0.0381 | 0.1022 | 0.0919 |
04:00 | 0.0071 | 0.1278 | 0.0937 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
05:00 | 0.0531 | 0.1944 | 0.1419 | 0.1106 | 0.1218 | 0.1570 | 0.1770 |
06:00 | 0.0786 | 0.0611 | 0.0920 | 0.1428 | 0.1728 | 0.2558 | 0.2497 |
07:00 | 0.2636 | 0.1786 | 0.2724 | 0.3096 | 0.3788 | 0.4038 | 0.3943 |
08:00 | 0.3709 | 0.4417 | 0.3464 | 0.3586 | 0.4361 | 0.5129 | 0.4692 |
09:00 | 0.6872 | 0.5894 | 0.6549 | 0.7426 | 0.7970 | 0.6051 | 0.5829 |
10:00 | 0.9520 | 0.8746 | 0.9028 | 0.9055 | 0.9842 | 0.7632 | 0.7530 |
11:00 | 1.0000 | 0.9342 | 0.9650 | 0.9683 | 1.0000 | 0.8130 | 0.8332 |
12:00 | 0.9632 | 0.9730 | 0.9087 | 0.9217 | 0.9450 | 0.8935 | 0.8803 |
13:00 | 0.8552 | 1.0000 | 0.8135 | 0.8256 | 0.8821 | 0.8077 | 0.8122 |
14:00 | 0.8288 | 0.9152 | 0.9257 | 0.7377 | 0.8370 | 0.7185 | 0.7410 |
15:00 | 0.8224 | 0.8104 | 0.7663 | 0.7468 | 0.7961 | 0.6037 | 0.6882 |
16:00 | 0.8655 | 0.9448 | 0.8542 | 0.8099 | 0.8420 | 0.7347 | 0.7567 |
17:00 | 0.8552 | 0.7966 | 0.8340 | 0.8104 | 0.8323 | 0.7593 | 0.8439 |
18:00 | 0.9440 | 0.8809 | 0.9155 | 0.8976 | 0.9567 | 0.9286 | 0.9539 |
19:00 | 0.9574 | 0.8677 | 1.0000 | 0.9779 | 0.9694 | 0.9734 | 0.9741 |
20:00 | 0.9746 | 0.9693 | 0.9657 | 1.0000 | 0.9808 | 1.0000 | 1.0000 |
21:00 | 0.9372 | 0.8784 | 0.9236 | 0.9419 | 0.9546 | 0.9575 | 0.9664 |
22:00 | 0.8704 | 0.7697 | 0.7977 | 0.7889 | 0.8417 | 0.8634 | 0.8824 |
23:00 | 0.6328 | 0.5519 | 0.7193 | 0.6425 | 0.6655 | 0.5858 | 0.6035 |
24:00 | 0.3127 | 0.2114 | 0.2794 | 0.2559 | 0.3357 | 0.1080 | 0.0975 |
Time | 1 January | 2 January | 3 January | 4 January | 5 January | 6 January | 7 January |
---|---|---|---|---|---|---|---|
01:00 | 0.1769 | 0.0568 | 0.1127 | 0.1314 | 0.1648 | 0.0769 | 0.0532 |
02:00 | 0.0877 | 0.0206 | 0.0338 | 0.0480 | 0.0765 | 0.0222 | 0.0123 |
03:00 | 0.0234 | 0.0000 | 0.0000 | 0.0000 | 0.0087 | 0.0000 | 0.0000 |
04:00 | 0.0000 | 0.0084 | 0.0035 | 0.0044 | 0.0063 | 0.0076 | 0.0140 |
05:00 | 0.0175 | 0.0746 | 0.0634 | 0.0497 | 0.0268 | 0.0565 | 0.0862 |
06:00 | 0.0863 | 0.2155 | 0.2134 | 0.1368 | 0.0938 | 0.2122 | 0.2569 |
07:00 | 0.1835 | 0.4382 | 0.4345 | 0.3082 | 0.2090 | 0.4740 | 0.5389 |
08:00 | 0.2763 | 0.5802 | 0.5894 | 0.4813 | 0.3517 | 0.6277 | 0.6503 |
09:00 | 0.4028 | 0.6453 | 0.6972 | 0.6705 | 0.5039 | 0.6849 | 0.6581 |
10:00 | 0.5212 | 0.7110 | 0.7683 | 0.7860 | 0.6136 | 0.7300 | 0.6693 |
11:00 | 0.5819 | 0.7455 | 0.8106 | 0.8073 | 0.6333 | 0.7446 | 0.6861 |
12:00 | 0.6016 | 0.7751 | 0.8042 | 0.7726 | 0.6080 | 0.7573 | 0.6900 |
13:00 | 0.6089 | 0.7684 | 0.7592 | 0.6936 | 0.5623 | 0.7300 | 0.6788 |
14:00 | 0.5789 | 0.7712 | 0.7176 | 0.5950 | 0.5221 | 0.7078 | 0.6754 |
15:00 | 0.5563 | 0.7634 | 0.6887 | 0.5400 | 0.4937 | 0.6842 | 0.6676 |
16:00 | 0.5768 | 0.7556 | 0.6852 | 0.5560 | 0.5560 | 0.7109 | 0.6928 |
17:00 | 0.8165 | 0.8836 | 0.8479 | 0.7913 | 0.8060 | 0.8558 | 0.8411 |
18:00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
19:00 | 0.9810 | 0.9605 | 0.9845 | 0.9423 | 0.9416 | 0.9778 | 0.9955 |
20:00 | 0.8984 | 0.8686 | 0.8859 | 0.8188 | 0.8036 | 0.8920 | 0.9379 |
21:00 | 0.7807 | 0.7723 | 0.7908 | 0.7087 | 0.6672 | 0.7903 | 0.8489 |
22:00 | 0.5885 | 0.6114 | 0.6289 | 0.4982 | 0.4219 | 0.6112 | 0.6933 |
23:00 | 0.3596 | 0.4399 | 0.4303 | 0.2860 | 0.1774 | 0.4180 | 0.4980 |
24:00 | 0.1923 | 0.2957 | 0.2542 | 0.0719 | 0.0000 | 0.2764 | 0.3553 |
Time | 1 July | 2 July | 3 July | 4 July | 5 July | 6 July | 7 July |
---|---|---|---|---|---|---|---|
01:00 | 0.1562 | 0.1612 | 0.1583 | 0.2747 | 0.2636 | 0.1699 | 0.1063 |
02:00 | 0.0728 | 0.0882 | 0.0763 | 0.1302 | 0.1266 | 0.0857 | 0.0394 |
03:00 | 0.0238 | 0.0348 | 0.0232 | 0.0456 | 0.0554 | 0.0302 | 0.0054 |
04:00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0063 | 0.0000 | 0.0000 |
05:00 | 0.0222 | 0.0186 | 0.0181 | 0.0190 | 0.0000 | 0.0021 | 0.0302 |
06:00 | 0.0945 | 0.0957 | 0.1040 | 0.0589 | 0.0554 | 0.0154 | 0.1187 |
07:00 | 0.2811 | 0.2781 | 0.3143 | 0.2091 | 0.1872 | 0.0955 | 0.2972 |
08:00 | 0.4692 | 0.4736 | 0.5172 | 0.4316 | 0.4153 | 0.2521 | 0.4903 |
09:00 | 0.6244 | 0.6212 | 0.6637 | 0.6873 | 0.7008 | 0.4459 | 0.6424 |
10:00 | 0.7396 | 0.7516 | 0.7733 | 0.8878 | 0.9017 | 0.6131 | 0.7476 |
11:00 | 0.8306 | 0.8479 | 0.8722 | 0.9734 | 0.9561 | 0.7163 | 0.8425 |
12:00 | 0.8979 | 0.9209 | 0.9389 | 1.0000 | 0.9561 | 0.7570 | 0.9051 |
13:00 | 0.9378 | 0.9673 | 0.9678 | 0.9876 | 0.9111 | 0.7809 | 0.9434 |
14:00 | 0.9737 | 1.0000 | 0.9938 | 0.9287 | 0.8515 | 0.7928 | 0.9865 |
15:00 | 0.9879 | 0.9829 | 1.0000 | 0.8546 | 0.8243 | 0.8111 | 0.9995 |
16:00 | 0.9970 | 0.9290 | 0.9881 | 0.8032 | 0.8462 | 0.8574 | 1.0000 |
17:00 | 1.0000 | 0.8564 | 0.9423 | 0.8004 | 0.9195 | 0.9199 | 0.9962 |
18:00 | 0.9960 | 0.8101 | 0.9005 | 0.8279 | 0.9937 | 0.9853 | 0.9833 |
19:00 | 0.9687 | 0.7567 | 0.8672 | 0.8203 | 1.0000 | 1.0000 | 0.9579 |
20:00 | 0.9176 | 0.6907 | 0.7756 | 0.7386 | 0.9435 | 0.9579 | 0.9213 |
21:00 | 0.9044 | 0.6489 | 0.7377 | 0.6787 | 0.9362 | 0.9417 | 0.8975 |
22:00 | 0.8291 | 0.5461 | 0.6354 | 0.5428 | 0.8692 | 0.8687 | 0.7875 |
23:00 | 0.6138 | 0.3572 | 0.4262 | 0.3279 | 0.6883 | 0.6426 | 0.5701 |
24:00 | 0.4095 | 0.1678 | 0.2272 | 0.0913 | 0.4341 | 0.4213 | 0.3927 |
Optimization Algorithms | LS-SVR Parameters | MAPE of Validation (%) | Computing Times (s) | |
---|---|---|---|---|
LS-SVR-CQPSO [36] | 685 | 125 | 1.17 | 129 |
LS-SVR-CQTS [37] | 357 | 118 | 1.13 | 113 |
LS-SVR-CQGA [38] | 623 | 137 | 1.11 | 152 |
LS-SVR-CQBA [39] | 469 | 116 | 1.07 | 227 |
LS-SVR-FOA | 581 | 109 | 1.29 | 87 |
LS-SVR-QFOA | 638 | 124 | 1.32 | 202 |
LS-SVR-CQFOA, | 734 | 104 | 1.02 | 136 |
Optimization Algorithms | Parameters | MAPE of Validation (%) | Computation Times (s) | |
---|---|---|---|---|
LS-SVR-CQPSO [36] | 574 | 87 | 0.98 | 134 |
LS-SVR-CQTS [37] | 426 | 68 | 1.02 | 109 |
LS-SVR-CQGA [38] | 653 | 98 | 0.95 | 155 |
LS-SVR-CQBA [39] | 501 | 82 | 0.9 | 231 |
LS-SVR-FOA | 482 | 94 | 1.54 | 82 |
LS-SVR-QFOA | 387 | 79 | 1.13 | 205 |
LS-SVR-CQFOA, | 688 | 88 | 0.86 | 132 |
Optimization Algorithms | Parameters | MAPE of Validation (%) | Computation Times (s) | |
---|---|---|---|---|
LS-SVR-CQPSO [36] | 375 | 92 | 0.96 | 139 |
LS-SVR-CQTS [37] | 543 | 59 | 1.04 | 107 |
LS-SVR-CQGA [38] | 684 | 62 | 0.98 | 159 |
LS-SVR-CQBA [39] | 498 | 90 | 0.95 | 239 |
LS-SVR-FOA | 413 | 48 | 1.51 | 79 |
LS-SVR-QFOA | 384 | 83 | 1.07 | 212 |
LS-SVR-CQFOA, | 482 | 79 | 0.79 | 147 |
Compared Models | RMSE | MAPE (%) | MAE |
---|---|---|---|
BPNN | 24.89 | 3.92 | 24.55 |
LS-SVR-CQPSO [36] | 14.40 | 2.27 | 14.21 |
LS-SVR-CQTS [37] | 14.50 | 2.26 | 14.24 |
LS-SVR-CQGA [38] | 14.41 | 2.24 | 14.13 |
LS-SVR-CQBA [39] | 14.45 | 2.25 | 14.18 |
LS-SVR-FOA | 15.90 | 2.48 | 15.62 |
LS-SVR-QFOA | 15.03 | 2.32 | 14.69 |
LS-SVR-CQFOA | 14.10 | 2.21 | 13.88 |
Compared Models | RMSE | MAPE (%) | MAE |
---|---|---|---|
BPNN | 92.30 | 2.34 | 90.74 |
LS-SVR-CQPSO [36] | 51.46 | 1.31 | 50.69 |
LS-SVR-CQTS [37] | 50.85 | 1.27 | 49.70 |
LS-SVR-CQGA [38] | 46.36 | 1.16 | 45.31 |
LS-SVR-CQBA [39] | 42.76 | 1.07 | 41.80 |
LS-SVR-FOA | 75.55 | 1.89 | 73.88 |
LS-SVR-QFOA | 59.74 | 1.47 | 57.96 |
LS-SVR-CQFOA | 40.62 | 1.02 | 39.76 |
Compared Models | RMSE | MAPE (%) | MAE |
---|---|---|---|
BPNN | 88.24 | 2.31 | 85.51 |
LS-SVR-CQPSO [36] | 51.03 | 1.33 | 49.35 |
LS-SVR-CQTS [37] | 45.73 | 1.22 | 44.68 |
LS-SVR-CQGA [38] | 46.18 | 1.19 | 44.46 |
LS-SVR-CQBA [39] | 40.75 | 1.09 | 39.85 |
LS-SVR-FOA | 72.00 | 1.88 | 69.69 |
LS-SVR-QFOA | 56.33 | 1.49 | 54.81 |
LS-SVR-CQFOA | 38.70 | 1.01 | 37.48 |
Compared Models | Wilcoxon Signed-Rank Test | ||
---|---|---|---|
T0.025 = 81 | T0.05 = 91 | p-Value | |
LS-SVR-CQFOA vs. BPNN | 0 T | 0 T | 0.000 ** |
LS-SVR-CQFOA vs. LS-SVR-CQPSO | 72 T | 72 T | 0.022 ** |
LS-SVR-CQFOA vs. LS-SVR-CQTS | 64 T | 64 T | 0.017 ** |
LS-SVR-CQFOA vs. LS-SVR-CQGA | 67 T | 67 T | 0.018 ** |
LS-SVR-CQFOA vs. LS-SVR-CQBA | 60 T | 60 T | 0.012 ** |
LS-SVR-CQFOA vs. LS-SVR-FOA | 50 T | 50 T | 0.009 ** |
LS-SVR-CQFOA vs. LS-SVR-QFOA | 68 T | 68 T | 0.019 ** |
Compared Models | Wilcoxon Signed-Rank Test | ||
---|---|---|---|
T0.025 = 81 | T0.05 = 91 | p-Value | |
LS-SVR-CQFOA vs. BPNN | 0 T | 0 T | 0.000 ** |
LS-SVR-CQFOA vs. LS-SVR-CQPSO | 74 T | 74 T | 0.023 ** |
LS-SVR-CQFOA vs. LS-SVR-CQTS | 75 T | 75 T | 0.024 ** |
LS-SVR-CQFOA vs. LS-SVR-CQGA | 78 T | 78 T | 0.026 ** |
LS-SVR-CQFOA vs. LS-SVR-CQBA | 80 T | 80 T | 0.027 ** |
LS-SVR-CQFOA vs. LS-SVR-FOA | 65 T | 65 T | 0.018 ** |
LS-SVR-CQFOA vs. LS-SVR-QFOA | 72 T | 72 T | 0.022 ** |
Compared Models | Wilcoxon Signed-Rank Test | ||
---|---|---|---|
T0.025 = 81 | T0.05 = 91 | p-Value | |
LS-SVR-CQFOA vs. BPNN | 0 T | 0 T | 0.000 ** |
LS-SVR-CQFOA vs. LS-SVR-CQPSO | 73 T | 73 T | 0.023 ** |
LS-SVR-CQFOA vs. LS-SVR-CQTS | 76 T | 76 T | 0.024 ** |
LS-SVR-CQFOA vs. LS-SVR-CQGA | 77 T | 77 T | 0.026 ** |
LS-SVR-CQFOA vs. LS-SVR-CQBA | 79 T | 79 T | 0.027 ** |
LS-SVR-CQFOA vs. LS-SVR-FOA | 65 T | 65 T | 0.018 ** |
LS-SVR-CQFOA vs. LS-SVR-QFOA | 71 T | 71 T | 0.022 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.-W.; Geng, J.; Hong, W.-C.; Zhang, Y. Hybridizing Chaotic and Quantum Mechanisms and Fruit Fly Optimization Algorithm with Least Squares Support Vector Regression Model in Electric Load Forecasting. Energies 2018, 11, 2226. https://doi.org/10.3390/en11092226
Li M-W, Geng J, Hong W-C, Zhang Y. Hybridizing Chaotic and Quantum Mechanisms and Fruit Fly Optimization Algorithm with Least Squares Support Vector Regression Model in Electric Load Forecasting. Energies. 2018; 11(9):2226. https://doi.org/10.3390/en11092226
Chicago/Turabian StyleLi, Ming-Wei, Jing Geng, Wei-Chiang Hong, and Yang Zhang. 2018. "Hybridizing Chaotic and Quantum Mechanisms and Fruit Fly Optimization Algorithm with Least Squares Support Vector Regression Model in Electric Load Forecasting" Energies 11, no. 9: 2226. https://doi.org/10.3390/en11092226
APA StyleLi, M. -W., Geng, J., Hong, W. -C., & Zhang, Y. (2018). Hybridizing Chaotic and Quantum Mechanisms and Fruit Fly Optimization Algorithm with Least Squares Support Vector Regression Model in Electric Load Forecasting. Energies, 11(9), 2226. https://doi.org/10.3390/en11092226