Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications
Abstract
:1. Introduction
2. Research Methods
3. Result and Discussion
3.1. Effect of Number of Layers (n) and Outer Radius (r1)
3.2. Effect of Inner Radius (r2) and Thickness of Nano-Ring (h1)
3.3. Angular Emissivity
3.4. Performance of TPV
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jin, S.; Lim, M.; Lee, S.S.; Lee, B.J. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap. Opt. Express 2016, 24, A635–A649. [Google Scholar] [CrossRef] [PubMed]
- Woolf, D.N.; Kadlec, E.A.; Bethke, D.; Grine, A.D.; Nogan, J.J.; Cederberg, J.G.; Hensley, J.M. High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter. Optica 2018, 5, 213–218. [Google Scholar] [CrossRef]
- Ghanekar, A.; Lin, L.; Zheng, Y. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems. Opt. Express 2016, 24, A868–A877. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.K.; Hsu, W.-C.H.; Huang, Y.; Boriskina, S.V.; Chen, G. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Huu, N.; Pistora, J.; Cada, M. Wavelength-selective emitters with pyramid nanogratings enhanced by multiple resonance modes. Nanotechnology 2016, 27. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wu, H.; Cheng, Q.; Zhao, J. 1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications. J. Quant. Spectrosc. Radiat. Transf. 2015, 158, 136–144. [Google Scholar] [CrossRef]
- Wang, L.P.; Zhang, Z.M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef]
- Song, J.; Si, M.; Cheng, Q.; Luo, Z. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter. Appl. Opt. 2016, 55, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Moreno, J.; Fleming, J.G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl. Phys. Lett. 2003, 83, 380–382. [Google Scholar] [CrossRef]
- Fleming, J.G. Addendum “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” (vol 83, pg 380, 2003). Appl. Phys. Lett. 2005, 86, 380. [Google Scholar] [CrossRef]
- Trupke, T.; Wurfel, P.; Green, M.A. Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett., 83, 380 (2003)]. Appl. Phys. Lett. 2004, 84, 1997–1998. [Google Scholar] [CrossRef]
- Hedayati, M.K.; Faupel, F.; Elbahri, M. Review of Plasmonic Nanocomposite Metamaterial Absorber. Materials 2014, 7, 1221–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; He, Y.; Jin, Y.; Ding, F.; Yang, L.; Ye, Y.; Zhong, S.; Lin, Y.; He, S. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 2014, 8, 495–520. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Dai, J.; Qiu, M. Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt. 2014, 16. [Google Scholar] [CrossRef]
- Shemelya, C.; Meo, D.D.; Latham, N.P.; Wu, X.; Bingham, C.; Padilla, W.; Vandervelde, T.E. Stable high temperature metamaterial emitters for thermophotovoltaic applications. Appl. Phys. Lett. 2014, 104. [Google Scholar] [CrossRef]
- Zhao, B.; Wanga, L.; Shuai, Y.; Zhang, Z.M. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. Int. J. Heat Mass Transf. 2013, 67, 637–645. [Google Scholar] [CrossRef]
- Cao, T.; Wang, S.; Wei, C.W. Simulation of tunable metamaterial perfect absorber by modulating Bi2Se3 dielectric function. Mater. Express 2016, 6, 45–52. [Google Scholar] [CrossRef]
- Wang, H.; Chang, J.-Y.; Yang, Y.; Wang, L. Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters. Int. J. Heat Mass Transf. 2016, 98, 788–798. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Tyler, T.; Starr, T.; Starr, A.F.; Jokerst, N.M.; Padilla, W.J. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Phys. Rev. Lett. 2011, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolf, D.; Hensley, J.; Cederberg, J.G.; Bethke, D.T.; Grine, A.D.; Shaner, E.A. Heterogeneous metasurface for high temperature selective emission. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q.; Wen, L.; Song, S.; Hu, X.; Xu, G. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application. Photonics Res. 2015, 3, 329–334. [Google Scholar] [CrossRef]
- Gu, W.; Tang, G.; Tao, W. High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array. Opt. Express 2015, 23, 30681–30694. [Google Scholar] [CrossRef] [PubMed]
- Rephaeli, E.; Fan, S.H. Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express 2009, 17, 15145–15159. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Cui, Y.; Ge, X.; Jin, Y.; He, S. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef]
- Wang, H.; Sivan, V.P.; Mitchell, A.; Rosengarten, G.; Phelan, P.; Wang, L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 2015, 137, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Molesky, S.; Dewalt, C.J.; Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 2013, 21, A96–A110. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Wang, T.; Gao, J.; Yang, X. Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics. J. Opt. 2014, 16. [Google Scholar] [CrossRef]
- Yun, D.; Min, X.Y. Perfect solar absorber based on nanocone structured surface for high-efficiency solar thermoelectric generators. Sci. China-Technol. Sci. 2015, 58, 19–28. [Google Scholar]
- Wen, D.; Yang, H.; Ye, Q.; Li, M.; Guo, L.; Zhang, J. Broadband metamaterial absorber based on a multi-layer structure. Phys. Scr. 2013, 88. [Google Scholar] [CrossRef]
- Adachi, S. Aluminum Nitride (AIN). In Optical Constants of Crystalline and Amorphous Semiconductors; Springer: New York, NY, USA, 1999; pp. 143–151. [Google Scholar]
- Wu, C.; Neuner, B., III; John, J.; Milder, A.; Zollars, B.; Savoy, S.; Shvets, G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 2012, 14, 024005. [Google Scholar] [CrossRef]
- Rakic’, A.D.; Djurisic, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef]
- Pastrnak, J.; Roskovcova, L. Refraction index measurements on AlN single crystals. Phys. Status Solidi B-Basic Solid State 1966, 14. [Google Scholar] [CrossRef]
- Hwanseong, L.; Taehwan, K.; Fekadu, T.M.; Cho, H.H. Enhancing radiative cooling performance using metal-dielectric-metal metamaterials. J. Mech. Sci. Technol. 2017, 31, 5107–5112. [Google Scholar]
- Mitrofanov, O.; Dominec, F.; Kužel, P.; Reno, J.L.; Brener, I.; Chung, U.-C.; Elissalde, C.; Maglione, M.; Mounaix, P. Near-field probing of Mie resonances in single TiO2 microspheres at terahertz frequencies. Opt. Express 2014, 22, 23034–23042. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L. Perfect selective metamaterial solar absorbers. Opt. express 2013, 21, A1078–A1093. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.; Melino, F.; Pinelli, M.; Spina, P.R. Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences. Appl. Energy 2014, 113, 1717–1730. [Google Scholar] [CrossRef]
- Rinnerbauer, V.; Lenert, A.; Bierman, D.M.; Yeng, Y.X.; Chan, W.R.; Geil, R.D.; Senkevich, J.J. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 2014, 4. [Google Scholar] [CrossRef]
Temp. [K] | ||
---|---|---|
Single-layer | Multilayer | |
1000 | 27.6 | 59.0 |
1200 | 43.0 | 71.6 |
1300 | 50.1 | 76 |
1400 | 56.6 | 79.6 |
1500 | 62.3 | 82.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maremi, F.T.; Lee, N.; Choi, G.; Kim, T.; Cho, H.H. Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications. Energies 2018, 11, 2299. https://doi.org/10.3390/en11092299
Maremi FT, Lee N, Choi G, Kim T, Cho HH. Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications. Energies. 2018; 11(9):2299. https://doi.org/10.3390/en11092299
Chicago/Turabian StyleMaremi, Fekadu Tolessa, Namkyu Lee, Geehong Choi, Taehwan Kim, and Hyung Hee Cho. 2018. "Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications" Energies 11, no. 9: 2299. https://doi.org/10.3390/en11092299
APA StyleMaremi, F. T., Lee, N., Choi, G., Kim, T., & Cho, H. H. (2018). Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications. Energies, 11(9), 2299. https://doi.org/10.3390/en11092299