Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solar TEG Model
2.2. Solar Absorber Model
2.3. TEG Model
2.4. Meteorological Data
2.5. Optimization Process
2.6. Experimental Setup
3. Results and Discussion
3.1. Experimental Validation of Simulink Model
3.2. Performance Curves of TE Module
3.3. Optimization Results
3.4. Controlling by Electric Current
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
Thermal conductivity | R | ectrical resistance | |
Electrical conductivity | Thickness of vacuum layer | ||
Seebeck coefficient | V | Vtage | |
Thermal resistance | Electrical current | ||
Thermal conductivity | Heat flux | ||
Thermal mass | P | Power | |
Temperature | Data point index | ||
Length [m] | glass transparency | ||
A | Surface Area | absorptance | |
efficiency | effective emittance | ||
solar intensity [ | σSB | Stefan Boltzmann constant | |
Abbreviation | |||
FEM | Finite Element Method | STEG | Solar Thermoelectric Generator |
DNI | Direct Normal Incident [ | TE | ermoelectric |
CPH | Combined heat and power | TEG | Thermoelectric Generator |
CSP | Concentrated Solar power Plants | TC | thermal concentration |
Sol | Solar | ||
Subscribes | |||
amb | Ambient | L | Loss |
c | Cold side | TEG | Thermoelectric Generator |
coll | Collector | th | Thermal |
E | Electrical | Ray to heat | |
h | Hot side | Heat to electricity | |
i | Section index | ||
n | Number of section |
References
- Rowe, D. Applications of nuclear-powered thermoelectric generators in space. Appl. Energy 1991, 40, 241–271. [Google Scholar] [CrossRef]
- Telkes, M. Solar thermoelectric generators. J. Appl. Phys. 1954, 25, 765–777. [Google Scholar] [CrossRef]
- Hicks, L.; Dresselhaus, M. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727. [Google Scholar] [CrossRef]
- Hicks, L.; Dresselhaus, M. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631. [Google Scholar] [CrossRef]
- Sokka, L.; Sinkko, T.; Holma, A.; Manninen, K.; Pasanen, K.; Rantala, M.; Leskinen, P. Environmental impacts of the national renewable energy targets—A case study from finland. Renew. Sustain. Energy Rev. 2016, 59, 1599–1610. [Google Scholar] [CrossRef]
- Noppers, E.H.; Keizer, K.; Milovanovic, M.; Steg, L. The importance of instrumental, symbolic, and environmental attributes for the adoption of smart energy systems. Energy Policy 2016, 98, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Inglesi-Lotz, R. The impact of renewable energy consumption to economic growth: A panel data application. Energy Econ. 2016, 53, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Tian, Y.; Zhao, C.-Y. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; McEnaney, K.; Chen, G.; Ren, Z. A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 2014, 7, 1615–1627. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Rosen, M.A. A critical review of photovoltaic–thermal solar collectors for air heating. Appl. Energy 2011, 88, 3603–3614. [Google Scholar] [CrossRef]
- Zhang, H.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated solar power plants: Review and design methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Müller-Steinhagen, H.; Trieb, F. Concentrating solar power. Ingenia Inform. QR Acad. Eng. 2004, 18, 43–50. [Google Scholar]
- Chen, W.-H.; Wu, P.-H.; Lin, Y.-L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Appl. Energy 2018, 209, 211–223. [Google Scholar] [CrossRef]
- Olsen, M.; Warren, E.; Parilla, P.; Toberer, E.; Kennedy, C.; Snyder, G.; Firdosy, S.; Nesmith, B.; Zakutayev, A.; Goodrich, A. A high-temperature, high-efficiency solar thermoelectric generator prototype. Energy Procedia 2014, 49, 1460–1469. [Google Scholar] [CrossRef]
- Kraemer, D.; Jie, Q.; McEnaney, K.; Cao, F.; Liu, W.; Weinstein, L.A.; Loomis, J.; Ren, Z.; Chen, G. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 2016, 1, 16153. [Google Scholar] [CrossRef] [Green Version]
- Fuschillo, N.; Gibson, R.; Eggleston, F.; Epstein, J. Solar thermoelectric generator for near-earth space applications. IEEE Trans. Electron Devices 1966, 13, 426–432. [Google Scholar] [CrossRef]
- Goldsmid, H.; Giutronich, J.; Kaila, M. Solar thermoelectric generation using bismuth telluride alloys. Sol. Energy 1980, 24, 435–440. [Google Scholar] [CrossRef]
- Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J.C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; He, W.; Hu, D.; Zhu, J.; Li, G.; Chen, H.; Liu, M. Study on a high-performance solar thermoelectric system for combined heat and power. Energy Convers. Manag. 2017, 143, 459–469. [Google Scholar] [CrossRef]
- Sun, D.; Shen, L.; Yao, Y.; Chen, H.; Jin, S.; He, H. The real-time study of solar thermoelectric generator. Appl. Therm. Eng. 2017, 119, 347–359. [Google Scholar] [CrossRef]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.W.; Cuff, D.C.; Tang, M.Y.; Dresselhaus, M.S. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef] [PubMed]
- Chen, G. Theoretical efficiency of solar thermoelectric energy generators. J. Appl. Phys. 2011, 109, 104908. [Google Scholar] [CrossRef]
- Kraemer, D.; McEnaney, K.; Chiesa, M.; Chen, G. Modeling and optimization of solar thermoelectric generators for terrestrial applications. Sol. Energy 2012, 86, 1338–1350. [Google Scholar] [CrossRef] [Green Version]
- Photovoltaic Geographical Information System—Interactive Maps. Available online: http://re.jrc.ec.europa.eu (accessed on 14 June 2017).
- Mitrani, D.; Tomé, J.A.; Salazar, J.; Turó, A.; García, M.J.; Chávez, J.A. Methodology for extracting thermoelectric module parameters. IEEE Trans. Instrum. Meas. 2005, 54, 1548–1552. [Google Scholar] [CrossRef]
- Dalola, S.; Ferrari, M.; Ferrari, V.; Guizzetti, M.; Marioli, D.; Taroni, A. Characterization of thermoelectric modules for powering autonomous sensors. IEEE Trans. Instrum. Meas. 2009, 58, 99–107. [Google Scholar] [CrossRef]
- Phillip, N.; Maganga, O.; Burnham, K.J.; Dunn, J.; Rouaud, C.; Ellis, M.A.; Robinson, S. Modelling and Simulation of a Thermoelectric Generator for Waste Heat Energy Recovery in Low Carbon Vehicles. In Proceedings of the 2012 2nd International Symposium on Environment Friendly Energies and Applications, Newcastle upon Tyne, UK, 25–27 June 2012. [Google Scholar]
- Kane, A.; Verma, V.; Singh, B. Temperature Dependent Analysis of Thermoelectric Module Using Matlab/Simulink. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012. [Google Scholar]
- Kim, H.S.; Liu, W.; Chen, G.; Chu, C.-W.; Ren, Z. Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc. Natl. Acad. Sci. USA 2015, 112, 8205–8210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, E.A.; Schaltz, E.; Rosendahl, L.; Kolaei, A.R.; Platzek, D. Experimental characterization procedure of thermoelectric generator modules under non-equilibrium thermal conditions. In Proceedings of the 2014 International Conference on Thermoelectrics, Nashville, TN, USA, 6–10 July 2014. [Google Scholar]
- Amatya, R.; Mayer, P.; Ram, R. High temperature z-meter setup for characterizing thermoelectric material under large temperature gradient. Rev. Sci. Instrum. 2012, 83, 075117. [Google Scholar] [CrossRef] [PubMed]
- Ando Junior, O.; Calderon, N.; de Souza, S. Characterization of a thermoelectric generator (teg) system for waste heat recovery. Energies 2018, 11, 1555. [Google Scholar] [CrossRef]
- Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 2011, 41, 399–431. [Google Scholar] [CrossRef]
- Dalala, Z.; Saadeh, O.; Bdour, M.; Zahid, Z. A new maximum power point tracking (mppt) algorithm for thermoelectric generators with reduced voltage sensors count control. Energies 2018, 11, 1826. [Google Scholar] [CrossRef]
- Kossyvakis, D.; Vossou, C.; Provatidis, C.; Hristoforou, E. Computational analysis and performance optimization of a solar thermoelectric generator. Renew. Energy 2015, 81, 150–161. [Google Scholar] [CrossRef]
Thermal Quantity | Electrical Equivalent |
---|---|
Temperature, | Voltage, [V] |
Heat flow, | Current, |
Thermal conductivity, | Electrical conductivity, |
Thermal mass, | Electrical capacitance, [F] |
ermal resistance, | Electrical resistance, |
Module Figure of Merit | |||||||||
---|---|---|---|---|---|---|---|---|---|
ZTmax = 1.5 | |||||||||
+ | TEG dimensions (L × W × H) are . |
Location | |||
---|---|---|---|
Aalborg | 3220 | 3093 | 6313 |
Gibraltar | 5050 | 2601 | 7651 |
Cold Side | Temperature Difference | R [ohm] | P [mW/cm2] | ||
---|---|---|---|---|---|
Measured | Calculated | Measured | Calculated | ||
TC = 25 °C | dT = 15 °C | 12.85 | 12.14 | 1.16 | 1.14 |
TC = 25 °C | dT = 20 °C | 13.2 | 12.14 | 1.39 | 1.21 |
TC = 40 °C | dT = 15 °C | 13.14 | 12.14 | 1.23 | 1.17 |
TC = 40 °C | dT = 20 °C | 13.7 | 12.14 | 1.45 | 1.29 |
-- | |||
---|---|---|---|
Copper | 385 | 0.385 | 8.9 |
* | 1.5 | 0.544 | 7.29 |
Location | Parabolic trough [W. h/m2day] | ZT = 0.8 [W. h/m2day] | ZT = 1.2 | ZT = 1.5 |
---|---|---|---|---|
Aalborg | 402 | 284 | 430 | 486 |
South of Spain | 631 | 360 | 564 | 614 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karami Rad, M.; Omid, M.; Rajabipour, A.; Tajabadi, F.; Aistrup Rosendahl, L.; Rezaniakolaei, A. Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition. Energies 2018, 11, 2425. https://doi.org/10.3390/en11092425
Karami Rad M, Omid M, Rajabipour A, Tajabadi F, Aistrup Rosendahl L, Rezaniakolaei A. Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition. Energies. 2018; 11(9):2425. https://doi.org/10.3390/en11092425
Chicago/Turabian StyleKarami Rad, Meysam, Mahmoud Omid, Ali Rajabipour, Fariba Tajabadi, Lasse Aistrup Rosendahl, and Alireza Rezaniakolaei. 2018. "Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition" Energies 11, no. 9: 2425. https://doi.org/10.3390/en11092425
APA StyleKarami Rad, M., Omid, M., Rajabipour, A., Tajabadi, F., Aistrup Rosendahl, L., & Rezaniakolaei, A. (2018). Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition. Energies, 11(9), 2425. https://doi.org/10.3390/en11092425