Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method of Characteristics
2.2. Boundary Conditions of Pumps
3. Model Establishment
3.1. Pipeline Meshing
3.2. Pumps Moment of Inertia
4. Simulation and Analysis
4.1. Pump Load Process and Extreme Pressure Along Pipeline
4.2. Quantity of Additional Moment of Inertia
4.3. Considering the Valve
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Acronyms
MOC | method of characteristics |
Nomenclature
Acceleration of gravity (m/s2) | |
Pressure head (m) | |
Distance along pipe from the inlet (m) | |
Time, as subscript to denote time (s) | |
Flow velocity (m/s) | |
Instantaneous wall shear stress | |
The angle between pipe and the horizontal plane. | |
The quasi-steady component | |
The unsteady component | |
Darcy–Weisbach friction factor | |
Main pipe diameter (m) | |
Wave speed of water hammer (m/s) | |
Time step (s) | |
A defined constant parameter of a pipeline | |
A defined constant parameter of a pipeline | |
Serial number of nodes (s) | |
Discharge (m3/s) | |
Area of section (m2) | |
length of element, space interval step (m) | |
Head of the pump (m) | |
Discharge through the pump (m3/s) | |
Torque of the pump (Nm) | |
Rotate speed of the pump | |
A defined dimensionless variable representing a pump’s characteristic | |
A defined dimensionless variable representing a pump’s characteristic | |
Instantaneous position of pump operation | |
Rated head of the pump (m) | |
Rated speed of the pump | |
Rated discharge of the pump (m3/s) | |
Rated torque of the pump (Nm) | |
Constant | |
The moment of inertia (kgm2) | |
The weight of rotating parts plus entrained liquid (kg) | |
The radius of gyration of the rotating mass (m) | |
The angular velocity in radians | |
Non-dimensional rotate speed of the pump | |
Section number | |
The length of pipeline (m) | |
Time of the pump powering off (m2) | |
The maximum hydraulic head (m) | |
The minimum hydraulic head (m) | |
The difference of hydraulic head (m) | |
The number of cases | |
The whole area surrounded by two extreme pressure curves | |
Non-dimensional coefficient | |
The hydraulic head at pump in the second steady condition (m) | |
The minimum hydraulic head at pump in a transient process (m) | |
The hydraulic head at pump in the first steady condition (m) |
References
- Kummu, M.; de Moel, H.; Ward, P.J.; Varis, O. How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Wylie, E.B.; Streeter, V.L. Fluid Transients; McGraw-Hill International Book Co.: New York, NY, USA, 1978. [Google Scholar]
- Kwan, E.S.K.; Heilman, C.B.; Shucart, W.A.; Klucznik, R.P. Enlargement of basilar artery aneurysms following balloon occlusion—“water-hammer effect” Report of 2 cases. J. Neurosurg. 1991, 75, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Brunone, B.; Karney, B.W.; Mecarelli, M.; Ferrante, M. Velocity profiles and unsteady pipe friction in transient flow. J. Water Resour. Plann. Manag.-Asce 2000, 126, 236–244. [Google Scholar] [CrossRef]
- Bergant, A.; Simpson, A.R.; Tijsseling, A.S. Water hammer with column separation: A historical review. J. Fluids Struct. 2006, 22, 135–171. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Chen, D.; Zhang, H.; Wang, F. Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system. Chaos Solitons Fractals 2015, 75, 50–61. [Google Scholar] [CrossRef]
- Fang, H.; Chen, L.; Dlakavu, N.; Shen, Z. Basic Modeling and simulation tool for analysis of hydraulic transients in hydroelectric power plants. IEEE Trans. Energy Convers. 2008, 23, 834–841. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, B. Investigation of Water Hammer Protection in Water Supply Pipeline Systems Using an Intelligent Self-Controlled Surge Tank. Energies 2018, 11, 16. [Google Scholar] [CrossRef]
- Stephenson, D. Effects of air valves and pipework on water hammer pressures. J. Transp. Eng.-ASCE 1997, 123, 101–106. [Google Scholar] [CrossRef]
- Bergant, A.; Kruisbrink, A.; Arregui, F. Dynamic Behaviour of Air Valves in a Large-Scale Pipeline Apparatus. Strojniski Vestn.-J. Mech. Eng. 2012, 58, 225–237. [Google Scholar] [CrossRef]
- Wan, W.; Huang, W.; Li, C. Sensitivity Analysis for the Resistance on the Performance of a Pressure Vessel for Water Hammer Protection. J. Press. Vessel Technol. Trans. Asme 2014, 136. [Google Scholar] [CrossRef]
- Stephenson, D. Simple guide for design of air vessels for water hammer protection of pumping lines. J. Hydraul. Eng. Asce 2002, 128, 792–797. [Google Scholar] [CrossRef]
- De Martino, G.; Fontana, N. Simplified Approach for the Optimal Sizing of Throttled Air Chambers. J. Hydraul. Eng. Asce 2012, 138, 1101–1109. [Google Scholar] [CrossRef]
- Karney, B.W.; Simpson, A.R. In-line check valves for water hammer control. J. Hydraul. Res. 2007, 45, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Su, G.; Wang, G.; Qiu, S.; Xia, Z. Numerical simulation and optimization on valve-induced water hammer characteristics for parallel pump feedwater system. Annals Nucl. Energy 2008, 35, 2280–2287. [Google Scholar] [CrossRef]
- Bazargan-Lari, M.R.; Kerachian, R.; Afshar, H.; Bashi-Azghadi, S.N. Developing an optimal valve closing rule curve for real-time pressure control in pipes. J. Mech. Sci. Technol. 2013, 27, 215–225. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Y.; Zheng, Y.; Zhang, Y. Optimization of Guide Vane Closing Schemes of Pumped Storage Hydro Unit Using an Enhanced Multi-Objective Gravitational Search Algorithm. Energies 2017, 10, 911. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, H.; Zhang, L. Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model. Energies 2018, 11, 1020. [Google Scholar] [CrossRef]
- Nagode, K.; Skrjanc, I. Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine. Energies 2014, 7, 874–889. [Google Scholar] [CrossRef] [Green Version]
- Carratelli, E.P.; Viccione, G.; Bovolin, V. Free surface flow impact on a vertical wall: A numerical assessment. Theor. Comput. Fluid Dyn. 2016, 30, 403–414. [Google Scholar] [CrossRef]
- Moghaddas, S.M.J.; Samani, H.M.V.; Haghighi, A. Transient protection optimization of pipelines using air-chamber and air-inlet valves. Ksce J. Civ. Eng. 2017, 21, 1991–1997. [Google Scholar] [CrossRef]
- Kim, H.; Hur, J.; Kim, S. The Optimization of Design Parameters for Surge Relief Valve for Pipeline Systems. In Proceedings of the Applied Mathematics and Computer Science Conference, Rome, Italy, 27–29 January 2017. [Google Scholar]
- Richter, W.; Zenz, G.; Schneider, J.; Knoblauch, H. Surge tanks for high head hydropower plants—Hydraulic layout—New developments/Wasserschlösser für Hochdruck-Wasserkraftanlagen—Hydraulische Auslegung—Neue Entwicklungen. Geomech. Tunn. 2015, 8, 60–73. [Google Scholar] [CrossRef]
- Gabl, R.; Righetti, M. Design criteria for a type of asymmetric orifice in a surge tank using CFD. Eng. Appl. Comp. Fluid Mech. 2018, 12, 397–410. [Google Scholar] [CrossRef]
- Adam, N.J.; De Cesare, G.; Nicolet, C.; Billeter, P.; Angermayr, A.; Valluy, B.; Schleiss, A.J. Design of a Throttled Surge Tank for Refurbishment by Increase of Installed Capacity at a High-Head Power Plant. J. Hydraul. Eng. 2018, 144, 10. [Google Scholar] [CrossRef]
- Li, X.; Zhu, M.; Xie, J. Numerical Simulation of Transient Pressure Control in a Pumped Water Supply System Using an Improved Bypass Pipe. Strojniski Vestn.-J. Mech. Eng. 2016, 62, 614–622. [Google Scholar] [CrossRef]
- Triki, A. Water-Hammer Control in Pressurized-Pipe Flow Using a Branched Polymeric Penstock. J. Pipeline Syst. Eng. Pract. 2017, 8. [Google Scholar] [CrossRef]
- Triki, A. Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mech. 2016, 227, 777–793. [Google Scholar] [CrossRef]
- Zeng, W.; Yang, J.; Hu, J.; Yang, J. Guide-Vane Closing Schemes for Pump-Turbines Based on Transient Characteristics in S-shaped Region. J. Fluids Eng.-Trans. Asme 2016, 138. [Google Scholar] [CrossRef]
- Ballun, J.V. A methodology for predicting check valve slam. J. Am. Water Work Assoc. 2007, 99. [Google Scholar] [CrossRef]
- Hur, J.; Kim, S.; Kim, H. Water hammer analysis that uses the impulse response method for a reservoir-pump pipeline system. J. Mech. Sci. Technol. 2017, 31, 4833–4840. [Google Scholar] [CrossRef]
- Wan, W.; Li, F. Sensitivity Analysis of Operational Time Differences for a Pump-Valve System on a Water Hammer Response. J. Press. Vessel Technol.-Trans. Asme 2016, 138. [Google Scholar] [CrossRef]
- Chaudhry, M.; Hussaini, M. Second-order accurate explicit finite-difference schemes for waterhammer analysis. J. Fluids Eng. 1985, 107, 523–529. [Google Scholar] [CrossRef]
- Kontzialis, K.; Moditis, K.; Paidoussis, M.P. Transient Simulations of the Fluid-Structure Interaction Response of a Partially Confined Pipe Under Axial Flows in Opposite Directions. J. Press. Vessel Technol.-Trans. Asme 2017, 139. [Google Scholar] [CrossRef]
- Kochupillai, J.; Ganesan, N.; Padmanabhan, C. A new finite element formulation based on the velocity of flow for water hammer problems. Int. J. Press. Vessels Pip. 2005, 82, 1–14. [Google Scholar] [CrossRef]
- Wylie, E.B.; Streeter, V.L.; Suo, L. Fluid Transients in Systems; Prentice Hall Englewood Cliffs: Englewood, NJ, USA, 1993. [Google Scholar]
- Meniconi, S.; Duan, H.F.; Brunone, B.; Ghidaoui, M.S.; Lee, P.J.; Ferrante, M. Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling. J. Hydraul. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Karney, B.W.; McInnis, D. Efficient calculation of transient flow in simple pipe networks. J. Hydraul. Eng.-Asce 1992, 118, 1014–1030. [Google Scholar] [CrossRef]
- Wan, W.; Huang, W. Investigation on complete characteristics and hydraulic transient of centrifugal pump. J. Mech. Sci. Technol. 2011, 25, 2583–2590. [Google Scholar] [CrossRef]
- Wan, W.; Huang, W. Investigation of Fluid Transients in Centrifugal Pump Integrated System With Multi-Channel Pressure Vessel. J. Press. Vessel Technol.-Trans. Asme 2013, 135. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, L.; Tijsseling, A.S.; Kruisbrink, A.C.H. Rapid filling of pipelines with the SPH particle method. In Proceedings of the International Conference on Advances in Computational Modeling and Simulation, Kunming, China, 14–16 December 2011. [Google Scholar]
- Wan, W.; Huang, W. Water hammer simulation of a series pipe system using the MacCormack time marching scheme. Acta Mech. 2018, 229, 3143–3160. [Google Scholar] [CrossRef]
Pumps | Pipeline | ||||||
---|---|---|---|---|---|---|---|
(m) | QR (m3/s) | (r/min) | (N · m) | (km) | (m) | (m/s) | (m2) |
35.57 | 8.60 | 375 | 84,583 | 40 | 5 | 1000 | 19.6 |
Cases | (kg · m2) | Valve Closing | ||||
---|---|---|---|---|---|---|
# ( = 1,2,…,7) | · 105 | / | / | / | / | / |
8# | 105 | 1000 | 600 s | 100% | 0 s | 0% |
9# | 105 | 1100 | 600 s | 100% | 0 s | 0% |
10# | 105 | 1000 | 60 s | 80% | 540 s | 20% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, W.; Zhang, B.; Chen, X. Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems. Energies 2019, 12, 108. https://doi.org/10.3390/en12010108
Wan W, Zhang B, Chen X. Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems. Energies. 2019; 12(1):108. https://doi.org/10.3390/en12010108
Chicago/Turabian StyleWan, Wuyi, Boran Zhang, and Xiaoyi Chen. 2019. "Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems" Energies 12, no. 1: 108. https://doi.org/10.3390/en12010108
APA StyleWan, W., Zhang, B., & Chen, X. (2019). Investigation on Water Hammer Control of Centrifugal Pumps in Water Supply Pipeline Systems. Energies, 12(1), 108. https://doi.org/10.3390/en12010108