Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System
Abstract
:1. Introduction
2. Problem Formulation
3. Battery Energy Storage Systems for Distributed Frequency Regulation
3.1. Distributed Two-Layer Frequency Regulation Model
3.2. Adjusting the Control Laws of the BESS for the Degradation Cost and SOC Limits
4. System Architecture
5. Simulation Results
5.1. The System’s Frequency Performance Without the BESS
5.2. The System’s Frequency Performance With the BESS
5.3. System Performance When Considering Battery Lifetime Degradation Cost and the SOC Limits
5.4. Impact of Different Ki Parameter Values
5.5. Impacts of Time Delay on Frequency Regulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
BESS | battery energy storage system |
SOC | state of charge |
RES | renewable energy resources |
FR | frequency regulation |
AGC | automatic generation control |
MAS | multi-agent system |
PI | proportional integral controller |
ki, kp | integral and proportional constant |
LFC | load frequency controller |
ACE | generates the area control error |
DG | distributed generator |
PL | load disturbance |
PBESS | output power of BESSs |
R | frequency bias coefficient |
B | speed droop coefficient |
H | equivalent inertia |
D | load frequency coefficient |
Tg | time constant of governor |
Tt | time constant of turbine |
Th | time constant of re-heater |
Tr | turbine HP coefficient |
G | graph |
A | adjacent matrix |
V | the set of agents |
E | the set of edges |
Δfi(k) | the system’s frequency deviation measured by agent i at the time step k |
ΔPi(k) | the system’s power mismatch measured by agent i at the time step k |
PBase | the baseline power |
Ki | power mismatch factor |
ξ, η | auxiliary variables |
di | out-going edges of agent i |
Si(k) | the generation cost of BESS_i |
αi, βi, γi | parameters of generation cost |
c | convergent factor |
PB,i(k + 1) | the output of BESS_i. |
λi(k + 1) | the incremental cost of BESS_i |
SOCmin, SOCmax | the minimum and maximum values of the SOC |
SOCL, SOCH | the low, high values of the SOC |
μ, σ | the factor of degradation cost |
T(s) | transfer function of frequency-based control structure considering the BESS |
References
- Sharma, S.; Huang, S.H.; Sarma, N.D.R. System inertial frequency response estimation and impact of renewable resources in ERCOT interconnection. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand Side Management: Demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Nguyen, N.; Mitra, J. An Analysis of the Effects and Dependency of Wind Power Penetration on System Frequency Regulation. IEEE Trans. Sustain. Energy 2016, 7, 354–363. [Google Scholar] [CrossRef]
- Zhao, C. Design and Stability of Load-Side Primary Frequency Control in Power Systems. IEEE Trans. Autom. Control 2014, 59, 1177–1189. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, J.F.; Galiana, F.D. Unit commitment with primary frequency regulation constraints. IEEE Trans. Power Syst. 2005, 20, 1836–1842. [Google Scholar] [CrossRef]
- Weckx, S.; D’Hulst, R.; Driesen, J. Primary and Secondary Frequency Support by a Multi-Agent Demand Control System. IEEE Trans. Power Syst. 2015, 30, 1394–1404. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kim, E.S.; Moon, S.I. Frequency and Voltage Control Strategy of Standalone Microgrids With High Penetration of Intermittent Renewable Generation Systems. IEEE Trans. Power Syst. 2016, 31, 718–728. [Google Scholar] [CrossRef]
- Fazeli, M.; Holland, P. Universal and Seamless Control of Distributed Resources-Energy Storage for All Operational Scenarios of Microgrids. IEEE Trans. Energy Convers. 2017, 32, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Sami, S.S.; Wu, J. Benefits of using virtual energy storage system for power system frequency response. Appl. Energy 2017, 194, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Hong, M.; Lin, W.; Loparo, K.A. Voltage and Frequency Regulation of Microgrid With Battery Energy Storage Systems. IEEE Trans. Smart Grid 2018. [Google Scholar] [CrossRef]
- Baccino, F.; Conte, F.; Grillo, S.; Massucco, S.; Silvestro, F. An Optimal Model-Based Control Technique to Improve Wind Farm Participation to Frequency Regulation. IEEE Trans. Sustain. Energy 2015, 6, 993–1003. [Google Scholar] [CrossRef]
- He, G.; Chen, Q.; Kang, C.; Xia, Q.; Poolla, K. Cooperation of Wind Power and Battery Storage to Provide Frequency Regulation in Power Markets. IEEE Trans. Power Syst. 2017, 32, 3559–3568. [Google Scholar] [CrossRef]
- Devane, E.; Kasis, A.; Antoniou, M.; Lestas, I. Primary Frequency Regulation with Load-Side Participation-Part II: Beyond Passivity Approaches. IEEE Trans. Power Syst. 2017, 32, 3519–3528. [Google Scholar] [CrossRef]
- Kasis, A.; Devane, E.; Spanias, C.; Lestas, I. Primary Frequency Regulation with Load-Side Participation-Part I: Stability and Optimality. IEEE Trans. Power Syst. 2017, 32, 3505–3518. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Song, Y.; Wang, J.; Xie, X. Vehicle-to-Grid Control for Supplementary Frequency Regulation Considering Charging Demands. IEEE Trans. Power Syst. 2015, 30, 3110–3119. [Google Scholar] [CrossRef]
- Liu, H.; Qi, J.; Wang, J.; Li, P.; Li, C.; Wei, H. EV Dispatch Control for Supplementary Frequency Regulation Considering the Expectation of EV Owners. IEEE Trans. Smart Grid 2018, 9, 3763–3772. [Google Scholar] [CrossRef] [Green Version]
- Yao, E.; Wong, V.W.S.; Schober, R. Robust Frequency Regulation Capacity Scheduling Algorithm for Electric Vehicles. IEEE Trans. Smart Grid 2017, 8, 984–997. [Google Scholar] [CrossRef]
- Mallada, E.; Zhao, C.; Low, S. Optimal Load-Side Control for Frequency Regulation in Smart Grids. IEEE Trans. Autom. Control 2017, 62, 6294–6309. [Google Scholar] [CrossRef] [Green Version]
- Delavari, A.; Kamwa, I. Improved Optimal Decentralized Load Modulation for Power System Primary Frequency Regulation. IEEE Trans. Power Syst. 2018, 33, 1013–1025. [Google Scholar] [CrossRef]
- Zhang, X.; Zha, X.; Yue, S.; Chen, Y. A Frequency Regulation Strategy for Wind Power Based on Limited Over-Speed De-Loading Curve Partitioning. IEEE Access 2018, 6, 22938–22951. [Google Scholar] [CrossRef]
- Peng, C.; Zou, J.; Lian, L. Dispatching strategies of electric vehicles participating in frequency regulation on power grid: A review. Renew. Sustain. Energy Rev. 2017, 68, 147–152. [Google Scholar] [CrossRef]
- Han, S.; Han, S.; Sezaki, K. Development of an Optimal Vehicle-to-Grid Aggregator for Frequency Regulation. IEEE Trans. Smart Grid 2010, 1, 65–72. [Google Scholar] [CrossRef]
- Yao, E.; Wong, V.W.S.; Schober, R. Optimization of Aggregate Capacity of PEVs for Frequency Regulation Service in Day-Ahead Market. IEEE Trans. Smart Grid 2018, 9, 3519–3529. [Google Scholar] [CrossRef]
- Zhao, Y.; Noori, M.; Tatari, O. Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis. Appl. Energy 2016, 170, 161–175. [Google Scholar] [CrossRef]
- Ko, K.S.; Han, S.; Sung, D.K. A New Mileage Payment for EV Aggregators with Varying Delays in Frequency Regulation Service. IEEE Trans. Smart Grid 2018, 9, 2616–2624. [Google Scholar] [CrossRef]
- Oudalov, A.; Chartouni, D.; Ohler, C. Optimizing a Battery Energy Storage System for Primary Frequency Control. IEEE Trans. Power Syst. 2007, 22, 1259–1266. [Google Scholar] [CrossRef]
- Qi, X.; Bai, Y.; Luo, H.; Zhang, Y.; Zhou, G.; Wei, Z. Novel Distributed Optimal Control of Battery Energy Storage System in an Islanded Microgrid with Fast Frequency Recovery. Energies 2018, 11. [Google Scholar] [CrossRef]
- Martins, R.; Hesse, H.C.; Jungbauer, J.; Vorbuchner, T.; Musilek, P. Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications. Energies 2018, 11. [Google Scholar] [CrossRef]
- Tan, Z.; Tan, Q.; Yang, S.; Ju, L.; De, G. A Robust Scheduling Optimization Model for an Integrated Energy System with P2G Based on Improved CVaR. Energies 2018, 11, 3437. [Google Scholar] [CrossRef]
- Stein, K.; Tun, M.; Matsuura, M.; Rocheleau, R. Characterization of a Fast Battery Energy Storage System for Primary Frequency Response. Energies 2018, 11, 3358. [Google Scholar] [CrossRef]
- Andrenacci, N.; Chiodo, E.; Lauria, D.; Mottola, F. Life Cycle Estimation of Battery Energy Storage Systems for Primary Frequency Regulation. Energies 2018, 11, 3320. [Google Scholar] [CrossRef]
- Stroe, D.I.; Knap, V.; Swierczynski, M.; Stroe, A.I.; Teodorescu, R. Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective. IEEE Trans. Ind. Appl. 2017, 53, 430–438. [Google Scholar] [CrossRef]
- Aditya, S.K.; Das, D. Battery energy storage for load frequency control of an interconnected power system. Electr. Power Syst. Res. 2001, 58, 179–185. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, B.; Wang, D.; Zhang, B. Using battery storage for peak shaving and frequency regulation: Joint optimization for super linear gains. IEEE Trans. Power Syst. 2018, 33, 2882–2894. [Google Scholar] [CrossRef]
- Zhang, Y.J.A.; Zhao, C.; Tang, W.; Low, S.H. Profit-Maximizing Planning and Control of Battery Energy Storage Systems for Primary Frequency Control. IEEE Trans. Smart Grid 2018, 9, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Lian, B.; Sims, A.; Yu, D.; Wang, C.; Dunn, R.W. Optimizing LiFePO4 battery energy storage systems for frequency response in the UK system. IEEE Trans. Sustain. Energy 2017, 8, 385–394. [Google Scholar] [CrossRef]
- Kazemi, M.; Zareipour, H. Long-Term Scheduling of Battery Storage Systems in Energy and Regulation Markets Considering Battery’s Lifespan. IEEE Trans. Smart Grid 2018, 9, 6840–6849. [Google Scholar] [CrossRef]
- Xu, B.; Shi, Y.; Kirschen, D.S.; Zhang, B. Optimal Battery Participation in Frequency Regulation Markets. IEEE Trans. Power Syst. 2018, 33, 6715–6725. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Tabrizi, M.; Sahni, M.; Povedano, A.; Nichols, D. Dynamic Available AGC Based Approach for Enhancing Utility Scale Energy Storage Performance. IEEE Trans. Smart Grid 2014, 5, 1070–1078. [Google Scholar] [CrossRef]
- Diaz, N.L.; Luna, A.C.; Vasquez, J.C.; Guerrero, J.M. Centralized Control Architecture for Coordination of Distributed Renewable Generation and Energy Storage in Islanded AC Microgrids. IEEE Trans. Power Electron. 2017, 32, 5202–5213. [Google Scholar] [CrossRef]
- Hengxuan, L.; Haishun, S.; Jinyu, W.; Shijie, C.; Haibo, H. A Fully Decentralized Multi-Agent System for Intelligent Restoration of Power Distribution Network Incorporating Distributed Generations [Application Notes]. IEEE Comput. Intell. Mag. 2012, 7, 66–76. [Google Scholar] [CrossRef]
- Dimeas, A.L.; Hatziargyriou, N.D. Operation of a Multiagent System for Microgrid Control. IEEE Trans. Power Syst. 2005, 20, 1447–1455. [Google Scholar] [CrossRef]
- Liu, W.; Gu, W.; Sheng, W.; Meng, X.; Wu, Z.; Chen, W. Decentralized Multi-Agent System-Based Cooperative Frequency Control for Autonomous Microgrids With Communication Constraints. IEEE Trans. Sustain. Energy 2017, 5, 446–456. [Google Scholar] [CrossRef]
- Hu, J.; Cao, J.; Guerrero, J.M.; Yong, T.; Yu, J. Improving Frequency Stability Based on Distributed Control of Multiple Load Aggregators. IEEE Trans. Smart Grid 2017, 8, 1553–1567. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Song, Y.; Lin, J. Decentralized Vehicle-to-Grid Control for Primary Frequency Regulation Considering Charging Demands. IEEE Trans. Power Syst. 2013, 28, 3480–3489. [Google Scholar] [CrossRef]
- Dang, J.; Seuss, J.; Suneja, L.; Harley, R.G. SoC Feedback Control for Wind and ESS Hybrid Power System Frequency Regulation. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 79–86. [Google Scholar] [CrossRef]
ki | kp | R | 1/B | Tg | Tt | Th | Tr | H | D |
---|---|---|---|---|---|---|---|---|---|
0.27 | 0.38 | 0.87 | 11 | 0.2 | 0.3 | 12 | 2 | 8.8 | 1 |
BESS_1 | 15 | −15 | 0.85 | 0.086 | 5.37 | 15.5 |
BESS_2 | 10 | −10 | 0.49 | 0.057 | 6.30 | 14.2 |
BESS_3 | 11 | −11 | 0.45 | 0.054 | 3.70 | 19.1 |
BESS_4 | 14 | −14 | 0.56 | 0.044 | 4.11 | 20.0 |
BESS_5 | 14 | −14 | 0.52 | 0.085 | 7.80 | 16.5 |
BESS_6 | 15 | −15 | 0.95 | 0.062 | 3.89 | 11.3 |
BESS_7 | 13 | −13 | 0.63 | 0.035 | 5.41 | 16.8 |
BESS_8 | 20 | −20 | 0.72 | 0.050 | 8.03 | 14.6 |
BESS_9 | 16 | −16 | 0.58 | 0.040 | 4.96 | 19.3 |
BESS_10 | 14 | −14 | 0.71 | 0.075 | 5.31 | 13.5 |
BESS_11 | 19 | −19 | 0.55 | 0.053 | 6.42 | 17.4 |
BESS_12 | 20 | −20 | 0.59 | 0.061 | 5.50 | 15.9 |
BESS_13 | 16 | −16 | 0.66 | 0.048 | 5.75 | 12.2 |
BESS_14 | 12 | −12 | 0.68 | 0.063 | 7.59 | 17.6 |
BESS_15 | 11 | −11 | 0.78 | 0.041 | 6.34 | 10.8 |
BESS_16 | 10 | −10 | 0.75 | 0.049 | 3.53 | 12.7 |
BESS_17 | 20 | −20 | 0.82 | 0.090 | 8.21 | 10.6 |
BESS_18 | 16 | −16 | 0.48 | 0.094 | 6.15 | 19.5 |
BESS_19 | 18 | −18 | 0.76 | 0.049 | 4.43 | 19.6 |
BESS_20 | 16 | −16 | 0.92 | 0.048 | 4.68 | 11.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Jin, J.; Lin, Q.; Li, B.; Wei, C.; Kang, W.; Chen, M. Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System. Energies 2019, 12, 199. https://doi.org/10.3390/en12010199
Lin H, Jin J, Lin Q, Li B, Wei C, Kang W, Chen M. Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System. Energies. 2019; 12(1):199. https://doi.org/10.3390/en12010199
Chicago/Turabian StyleLin, Houfei, Jianxin Jin, Qidai Lin, Bo Li, Chengzhi Wei, Wenfa Kang, and Minyou Chen. 2019. "Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System" Energies 12, no. 1: 199. https://doi.org/10.3390/en12010199
APA StyleLin, H., Jin, J., Lin, Q., Li, B., Wei, C., Kang, W., & Chen, M. (2019). Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System. Energies, 12(1), 199. https://doi.org/10.3390/en12010199