Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Temperatures of the Heat Transfer Fluids Supplied to the Heat Pump Evaporators
3.2. Specific Heat Outputs of Heat Exchangers and Specific Extracted Energies
3.3. Heat Resistances of the Heat Exchangers
- tr.m—temperature of the reference ground or rock mass (°C);
- ta,h.t.f—average temperature of the heat transfer fluid (°C);
- qτ—specific heat output converted to 1 m2 of heat exchanger surface (W/m2).
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A | Single U-tube VGHE |
B | Double U-tube VGHE |
L | Linear HGHE |
HGHE | Horizontal Ground Heat Exchanger |
HVAC | Heating, Ventilation and Air Conditioning |
N | Coefficient of asymmetry of temperature distribution (-) |
Q1 | Lower quartile of temperature distribution (°C) |
Q2 | Upper quartile of temperature distribution (°C) |
PCM | Phase changing materials |
R | Thermal resistance of heat exchanger (K.m2/W) |
R2 | Determination coefficient (-) |
Rv | Temperature range (K) |
S | Slinky HGHE |
S2 | Temperature variance (K2) |
S% | Variation coefficient of temperature distribution (%) |
Vτ | Volume flow of heat transfer fluid (m3/h) |
VGHE | Vertical Ground Heat Exchanger |
qτ | Specific heat output of heat exchanger W/m,W/m2 |
r | Category representative of temperature interval (°C) |
t | Temperature (°C) |
Median of temperatures (°C) | |
Mode of temperatures (°C) | |
Reference temperature of the ground or rock mass (°C) | |
tr.m | Average temperature of heat transfer fluid (°C) |
ta,h.t.f. | Volumetric moisture (%) |
v | Relative frequency of temperatures (%) |
wi | Length of heating period (h) |
τ | Single U-tube VGHE |
Indexes | |
A | Linear HGHE |
B | Slinky HGHE |
L | Average value |
S | Ambient air temperature |
a | Maximum value |
e | Minimal value |
max | Summative value |
min | Single U-tube VGHE |
∑ | Double U-tube VGHE |
References
- Peréz-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Stefansson, V. The renewability of geothermal energy. In Proceedings of the World Geothermal Congress 2000, Tohoku, Japan, 28 May–10 June 2000; pp. 883–888. [Google Scholar]
- Stefansson, V.; Axelsson, G. Sustainable utilization of geothermal resources through stepwise development. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005; pp. 1–8. [Google Scholar]
- Wei, W.; Baolong, W.; Tian, Y.; Wenxing, S.; Yiating, L. A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump. Renew. Energy 2013, 59, 39–48. [Google Scholar] [CrossRef]
- Mensah, K.; Jang, Y.-S.; Choi, J.M. Assessment of design strategies in a ground source heat pump system. Energy Build. 2017, 138, 301–308. [Google Scholar] [CrossRef]
- Verda, V.; Cosentino, S.; Russo, S.L.; Sciacovelli, A. Second law analysis of horizontal geothermal heat pump systems. Energy Build. 2016, 124, 236–240. [Google Scholar] [CrossRef]
- Choi, W.; Ooka, R.; Nam, Y. Impact of long-term operation of ground-source heat pump on subsurface thermal state in urban areas. Sustain. Cities Soc. 2018, 38, 429–439. [Google Scholar] [CrossRef]
- Rybach, L. Geothermal energy: sustanability and the environment. Geothermics 2003, 32, 463–470. [Google Scholar] [CrossRef]
- Larwa, B. Heat transfer model to predict temperature distribution in tha ground. Energies 2019, 12, 25. [Google Scholar] [CrossRef]
- Gultekin, A.; Aydin, M.; Sisman, A. Thermal performance analysis of multiple borehole heat exchangers. Energy Convers. Manag. 2016, 122, 544–551. [Google Scholar] [CrossRef]
- Sivasakthivel, T.; Murugesan, K.; Thomas, H.R. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept. Appl. Energy 2014, 116, 76–85. [Google Scholar] [CrossRef]
- Zarrella, A.; De Carli, M. Heat transfer of short helical borehole heat exchnagers. Appl. Energy 2013, 102, 1477–1491. [Google Scholar] [CrossRef]
- Hepburn, B.D.P.; Sedighi, M.; Thomas, H.R. Field-scale monitoring of a horizontal ground source heat system. Geothermics 2016, 61, 86–103. [Google Scholar] [CrossRef]
- Michopoulos, A.; Kyriakis, N. Predicting the fluid temperature at the exit of the vertical ground heat exchangers. Appl. Energy 2009, 86, 2065–2070. [Google Scholar] [CrossRef]
- Go, G.-H.; Lee, S.-R.; Nikhil, N.V.; Yoon, S. A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration. Energy 2015, 83, 766–777. [Google Scholar] [CrossRef]
- Kayaci, N.; Demir, H. Long time performance analysis of ground source heat pump for space heating and cooling applications based on thermo-economic optimization criteria. Energy Build. 2018, 163, 121–139. [Google Scholar] [CrossRef]
- Ren, C.H.; Deng, Y.; Cao, S.-J. Evaluation of polyethylene and steel heat exchangers of ground source heat pump systems based on seasonal performance comparison and life cycle assessment. Energy 2018, 162, 54–64. [Google Scholar] [CrossRef]
- Remiorz, L.; Hanuszkiewicz-Drapala, M. Cumulated energy consumption in a heat pump system using a U-tube ground heat exchanger in a moderate climate. Energy Build. 2015, 96, 118–127. [Google Scholar] [CrossRef]
- Fujii, H.; Nishi, K.; Komaniwa, Y.; Chou, N. Numerical modeling of slinky-coil horizontal ground heat exchangers. Geothermics 2012, 41, 55–62. [Google Scholar] [CrossRef]
- Dehghan, B.; Sisman, A.; Aydin, M. Parametric investigation of helical ground heat exchangers for heat pump applications. Energy Build. 2016, 127, 999–1007. [Google Scholar] [CrossRef]
- Lee, C.H.; You, J.; Park, H. In-situ response test of various borehole depths and heat injection rates at standing column well geothermal heat exchanger systems. Energy Build. 2018, 172, 201–208. [Google Scholar] [CrossRef]
- Zeng, H.; Diao, N.; Fang, Z. Heat transfer analysis of boreholes in vertical ground heat exchangers. Int. J. Heat Mass Transf. 2003, 46, 4467–4481. [Google Scholar] [CrossRef]
- Bae, S.M.; Nam, Y.; Choi, J.M.; Lee, K.H.; Choi, J.S. Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test. Energies 2019, 12, 651. [Google Scholar] [CrossRef]
- Neuberger, P.; Adamovský, R.; Šeďová, M. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger. Energies 2014, 7, 972–987. [Google Scholar] [CrossRef]
- Pauli, P.; Neuberger, P.; Adamovský, R. Monitoring and Analysing Changes in Temperature and Energy in the Ground with Installed Horizontal Ground Heat Exchangers. Energies 2016, 9, 555. [Google Scholar] [CrossRef]
- Bottarelli, M.; Bortoloni, M.; Su, Y. Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials. Appl. Therm. Eng. 2015, 90, 1044–1051. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; DuanMu, L.; Li, X.; Shang, Y.; Dong, M. Experimental performance analysis of solar assited ground source heat pump system under diferent heating operation modes. Appl. Therm. Eng. 2015, 75, 325–333. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Wang, Y.; Tu, J. An integrated predictive model of the long-term performance of ground source heat pump (GSHP) systems. Energy Build. 2018, 159, 309–318. [Google Scholar] [CrossRef]
- You, T.; Wu, W.; Shi, W.; Wang, B.; Li, X. An overview of the problems and solution of soil thermal imbalance of ground-coupled heat pumps in cold regions. Appl. Energy 2016, 177, 515–536. [Google Scholar] [CrossRef]
- Guo, X.; Hendel, M. Urban water networks as a an alternative source for district heating and emergency heat-wave cooling. Energy 2018, 145, 79–87. [Google Scholar] [CrossRef]
- Neuberger, P.; Adamovský, R. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources. Energies 2017, 10, 1922. [Google Scholar] [CrossRef]
- Banks, D. An Introduction to Thermogeology: Ground Source Heating and Cooling, 2nd ed.; JohnWiley & Sons: Chichester, UK, 2012; p. 546. ISBN 978-0-470-67034-7. [Google Scholar]
- Hepbasli, A. Thermodynamic analysis of a ground-source heat pump systém for district heating. Int. J. Energy Res. 2005, 29, 671–687. [Google Scholar] [CrossRef]
- Rosén, B.; Gabrielsson, A.; Hellström, G.; Nilsson, G. System för Värme och kyla ur Mark—Demonstrationsobjekt över Jordvärmeanläggningar; Statens Geotekniska Institut: Linköping, Sweden, 2006; (In Swedish). Available online: http://swedgeo.diva-portal.org/smash/get/diva2:1300458/FULLTEXT01.pdf (accessed on 11 April 2019).
- Kyriakis, N.; Michopoulos, F. On the maximum thermal load of ground heat exchangers. Energy Build. 2006, 38, 25–29. [Google Scholar] [CrossRef]
- Todoran, T.P.; Balan, M.C. Long term behavior of a geothermal heat pump with oversized horizontal collector. Energy Build. 2016, 133, 799–809. [Google Scholar] [CrossRef]
- The Engineering ToolBox: Ethanol Freeze Protected Water Solutions. Available online: https://www.engineeringtoolbox.com/ethanol-water-d_989.html (accessed on 7 February 2015).
Header | HGHE | VGHE | Ambient Air | ||
---|---|---|---|---|---|
L | S | A | B | e | |
Average (°C) | 8.13 ± 4.50 | 6.36 ± 4.79 | 7.78 ± 2.94 | 8.13 ± 3.12 | 3.98 ± 6.21 |
Minimum tmin (°C) | 1.67 | 0.39 | 2.08 | 2.64 | −17.23 |
Maximum tmax (°C) | 17.82 | 17.97 | 13.66 | 16.69 | 26.57 |
Median (°C) | 6.39 | 4.59 | 7.28 | 7.35 | 3.69 |
Lower quartile Q1 | 4.63 | 2.78 | 5.87 | 6.04 | −0.65 |
Upper quartile Q2 | 11.40 | 8.92 | 9.67 | 9.09 | 7.92 |
Variance S2 (K2) | 20.23 | 22.95 | 8.65 | 9.71 | 38.59 |
Variation coefficient S% (%) | 55.34 | 75.35 | 37.79 | 38.30 | 155.94 |
Range Rv (K) | 16.15 | 17.59 | 11.58 | 14.05 | 43.79 |
Interquartile range Q1–Q2 (K) | 6.77 | 6.15 | 3.80 | 3.86 | 8.56 |
Parameter | HGHE | VGHE | ||
---|---|---|---|---|
L | S | A | B | |
qτ,a (W/m) | 4.92 ± 3.60 | 3.35 ± 2.42 | 7.53 ± 5.25 | 4.90 ± 3.42 |
qτ,max (W/m) | 15.25 | 12.48 | 29.28 | 14.18 |
qτ,a (W/m2) | 39.14 ± 28.67 | 33.38 ± 24.11 | 59.97 ± 41.80 | 48.80 ± 34.08 |
qτ,max (W/m2) | 121.42 | 124.20 | 233.08 | 141.05 |
qa (kJ/m2·day) | 1614.15 ± 1076.40 | 938.31 ± 677.70 | 2723.40 ± 1785.58 | 2353.59 ± 1540.89 |
qmax (kJ/m2·day) | 4407.73 | 4258.86 | 7495.07 | 6564.86 |
qΣ (MJ/m2) | 351.88 | 204.55 | 593.70 | 513.08 |
τΣ (h) | 2497 | 1703 | 2750 | 2920 |
Parameter | HGHE | VGHE | ||
---|---|---|---|---|
L | S | A | B | |
S (m2) | 41.47 | 20.11 | 28.40 | 45.44 |
Vτ,a (m3/h) | 0.47 ± 0.22 | 0.35 ± 0.12 | 0.52 ± 0.26 | 0.61 ± 0.31 |
Vτ,max (m3/h) | 0.89 | 0.72 | 1.03 | 1.27 |
VΣ (m3) | 1 183.70 | 592.82 | 1 435.96 | 1 787.94 |
Ra (m2⋅K/W) | 0.07 ± 0.02 | 0.14 ± 0.06 | 0.09 ± 0.03 | 0.11 ± 0.04 |
Rmax (m2·K/W) | 0.13 | 0.38 | 0.16 | 0.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuberger, P.; Adamovský, R. Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps. Energies 2019, 12, 1853. https://doi.org/10.3390/en12101853
Neuberger P, Adamovský R. Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps. Energies. 2019; 12(10):1853. https://doi.org/10.3390/en12101853
Chicago/Turabian StyleNeuberger, Pavel, and Radomír Adamovský. 2019. "Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps" Energies 12, no. 10: 1853. https://doi.org/10.3390/en12101853
APA StyleNeuberger, P., & Adamovský, R. (2019). Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps. Energies, 12(10), 1853. https://doi.org/10.3390/en12101853