Energy Recovery from Sewage Sludge: The Case Study of Croatia
Abstract
:1. Introduction
2. Sewage Sludge Management in Croatia
2.1. Sewage Sludge Disposal Practices
2.2. The Public Wastewater System in Croatia
2.3. Sewage Sludge Treatment in Croatia
3. Analysis and Results
3.1. The Wastewater Treatment Plant Zagreb
3.2. Future Wastewater Treatment Projects
3.3. Energy Recovery from Sewage Sludge
3.4. Drying of Sewage Sludge
3.5. Disposal of Incinerated Sewage Sludge Ash (ISSA)
3.6. Avoided CO2 Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Joint Research Centre. Best Available Techniques (BAT) Reference Document for Waste Treatment; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Wiechmann, B.; Dienemann, C.; Kabbe, C.; Brandt, S.; Vogel, I.; Roskosch, A. Sewage Sludge Management in Germany; Umweltbundesamt GVP: Bonn, Germany, 2013. [Google Scholar]
- European Commission. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land, Part I: Overview Report; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M. Sludge management—Future issues and trends. Water Sci. Technol. 2000, 41, 1–8. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelaka, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Christensen, T.H.; Guildal, T.; Scheutz, C. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant. Chemosphere 2015, 138, 874–882. [Google Scholar] [CrossRef]
- Hadi, P.; Xu, M.; Ning, C.; Lin, C.S.K.; McKay, G. A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chem. Eng. J. 2015, 260, 895–906. [Google Scholar] [CrossRef]
- Zhang, W.; Grimi, N.; Jaffrin, M.; Ding, L.; Tang, B.; Zhang, Z. Optimization of RDM-UF for alfalfa wastewater treatment using RSM. Environ. Sci. Pollut. Res. 2018, 25, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J. Environ. Manag. 2018, 227, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Mininni, G.; Blanch, A.; Lucena, F.; Berselli, S. EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ. Sci. Pollut. Res. 2015, 22, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
- Thevenon, F.; Graham, N.D.; Chiaradia, M.; Arpagaus, P.; Wildi, W.; Poté, J. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries. Sci. Total Environ. 2011, 412, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinosa, L.; Ayol, A.; Baudez, J.-C.; Canziani, R.; Jenicek, P.; Léonard, A.; Rulkens, W.; Xu, G.; Van Dijk, L. Sustainable and Innovative Solutions for Sewage Sludge Management. Water 2011, 3, 702–717. [Google Scholar] [CrossRef] [Green Version]
- Mills, N.; Pearce, P.; Farrow, J.; Thorpe, R.; Kirkby, N. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag. 2014, 34, 185–195. [Google Scholar] [PubMed] [Green Version]
- Đurđević, D.; Blecich, P.; Lenić, K. Energy potential of digestate produced by anaerobic digestion in biogas power plants: the case study of Croatia. Environ. Eng. Sci. 2018, 35, 1286–1293. [Google Scholar] [CrossRef]
- European Commission. Optimal Use of Biogas from Waste Streams. An Assessment of the Potential of Biogas from Digestion in the EU beyond 2020; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- EuroObserv’ER. Biogas Barometer; EuroObserv’ER: Frankfurt, Germany, 2017. [Google Scholar]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Đurđević, D.; Balić, D.; Jurić, Ž. Socio-Economic Aspects in Satisfying Energy Demands by Different Technologies of Heat and Electricity Generation. Tech. Gaz. 2019, 26. [Google Scholar]
- Stasta, P.; Boráň, J.; Bébar, L.; Stehlik, P.; Oral, J. Thermal processing of sewage sludge. Appl. Therm. Eng. 2006, 26, 1420–1426. [Google Scholar] [CrossRef]
- Cao, Y.; Pawłowski, A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Lumley, N.P.; Ramey, D.F.; Prieto, A.L.; Braun, R.J.; Cath, T.Y.; Porter, J.M. Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective. Bioresour. Technol. 2014, 161, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Di Fraia, S.; Massarotti, N.; Vanoli, L.; Costa, M. Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment. Energy 2016, 115, 1560–1571. [Google Scholar] [CrossRef]
- Johansson, K.; Perzon, M.; Fröling, M.; Mossakowska, A.; Svanström, M. Sewage sludge handling with phosphorus utilization—Life cycle assessment of four alternatives. J. Clean. Prod. 2008, 16, 135–151. [Google Scholar] [CrossRef]
- European Commission. Consultative Communication on the Sustainable Use of Phosphorus, COM (2013) 517 Final; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Praspaliauskas, M.; Pedišius, N. A review of sludge characteristics in Lithuania’s wastewater treatment plants and perspectives of its usage in thermal processes. Renew. Sustain. Energy Rev. 2017, 67, 899–907. [Google Scholar] [CrossRef]
- Openshaw, K. Energy Values of Unprocessed Biomass, Charcoal and other Biomass Fuels and their role in Greenhouse Gas Mitigation and Energy Use. In Advances in Environmental Science and Energy Planning; WSEAS Press: Tenerife, Canary Islands, Spain, 2014; pp. 30–40. [Google Scholar]
- Fuwape, J.A. Charcoal and fuel value of agroforestry tree crops. Agrofor. Syst. 1993, 22, 175–179. [Google Scholar] [CrossRef]
- Republic of Poland. The National Urban Wastewater Treatment Program; Regulation of the Ministry of Environment: Warsaw, Poland, 2003.
- Stucki, M.; Eymann, L.; Gerner, G.; Hartmann, F.; Wanner, R.; Krebs, R. Hydrothermal carbonnization of sewage sludge on industrial scale: Energy efficiency, environmental effects and combustion. J. Energy Chall. Mech. 2015, 2, 38–44. [Google Scholar]
- Donatello, S.; Cheeseman, C.R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Manag. 2013, 33, 2328–2340. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M. Sludge pyrolysis for energy recovery and pollution control. In Proceedings of the National Conference on Municipal Treatment Plant Sludge Management, Anaheim, CA, USA, 18–20 August 1975. [Google Scholar]
- Marrero, T.W.; McAuley, B.P.; Sutterlin, W.R.; Morris, J.S.; Manahan, S.E. Fate of heavy metals and radioactive metals in gasification of sewage sludge. Waste Manag. 2004, 24, 193–198. [Google Scholar] [CrossRef]
- Luts, D.; Devoldere, K.; Laethem, B.; Bartholomeeusen, W.; Ockier, P. Co-incineration of dried sewage sludge in coal-fired power plants: A case study. Water Sci. Technol. 2000, 42, 259–268. [Google Scholar] [CrossRef]
- Croatian Waters. Multiannual Programme of Municipal Water Building Construction 2014–2023; Croatian Waters: Zagreb, Croatia, 2014. [Google Scholar]
- Croatian Bureau of Statistics. Statistical Yearbook of the Republic of Croatia 2017; Croatian Bureau of Statistics: Zagreb, Croatia, 2017. [Google Scholar]
- Government of the Republic of Croatia. The Revised Implementation Plan for Water Utility Directives; Government of the Republic of Croatia: Zagreb, Croatia, 2010.
- Bodik, I.; Sedlacek, S.; Kubaska, M.; Hutnan, M. Biogas Production in Municipal Wastewater Treatment Plants—Current Status in EU with a Focus on the Slovak Republic. Chem. Biochem. Eng. Q. 2011, 25, 335–340. [Google Scholar]
- Ministry of Environmental Protection and Energy. Ordinance on Thermal Treatment of Waste (OG 75/2016); Official Gazzette: Zagreb, Croatia, 2016.
- Zagreb Wastewater Ltd. 2010. Available online: http://www.zov-zagreb.hr/en/home/ (accessed on 21 August 2018).
- Bachmann, N. Sustainable Biogas Production in Municipal Wastewater Treatment Plants; IEA Bioenergy: Massongex, Switzerland, 2015. [Google Scholar]
- Vouk, D.; Nakić, D.; Štirmer, N.; Serdar, M. Possible disposal of sludge generated in the process of wastewater treatment in concrete industry. Hrvatske Vode 2015, 23, 277–286. [Google Scholar]
- Rutz, D.; Mergner, R.; Janssen, R. Sustainable Heat Use of Biogas Plants: A Handbook; WIP Renewable Energies: Munich, Germany, 2015. [Google Scholar]
- Fruergaard, T.; Christensen, T.H.; Astrup, T.F. Energy recovery from waste incineration: Assessing the importance of district heating networks. Waste Manag. 2010, 30, 1264–1272. [Google Scholar] [CrossRef]
- Eriksson, O.; Finnveden, G. Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO2 Emissions. Energies 2017, 10, 539. [Google Scholar] [CrossRef]
- Komilis, D.; Kissas, K.; Symeonidis, A. Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. Waste Manag. 2014, 34, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Bennamoun, L. Solar drying of wastewater sludge: A review. Renew. Sustain. Energy Rev. 2012, 16, 1061–1073. [Google Scholar] [CrossRef]
- FAO. Calculation Procedure for the Penman–Monteith Equation; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/docrep/X0490E/x0490e08.htm#penman%20monteith%20equation (accessed on 1 May 2019).
- Vouk, D.; Serdar, M.; Vučinić, A.A. Use of incinerated sewage sludge ash in cement mortars: Case study in Croatia. Tech. Gaz. 2017, 24, 43–51. [Google Scholar]
- Nowak, B.; Pessl, A.; Aschenbrenner, P.; Szentannai, P.; Mattenberger, H.; Rechberger, H.; Hermann, L.; Winter, F. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J. Hazard. Mater. 2010, 179, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Kuo, J. Potential of greenhouse gas emissions from sewage sludge management: A case study of Taiwan. J. Clean. Prod. 2016, 129, 196–201. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Government of the Republic of Croatia. Waste Management Plan of the Republic of Croatia for the Period 2017–2022; Government of the Republic of Croatia: Zagreb, Croatia, 2017.
- Olofsson, M.; Sahlin, J.; Ekvall, T.; Sundberg, J. Driving forces for import of waste for energy recovery in Sweden. Waste Manag. 2005, 23, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Dick, H.; Scholes, P. Comparing the Costs of Alternative Waste Treatment Options; WRAP: Banbury, UK, 2018. [Google Scholar]
- LIFE Clim’Foot Project. The Bilan Carbone Clim’Foot Tool. 2016. Available online: http://www.climfoot-project.eu/en/bilan-carbone%C2%AE-clim%E2%80%99foot-tool (accessed on 15 March 2019).
Parameter | Anaerobic Digestion | Incineration | Pyrolysis | Gasification | Hydrothermal Carbonization |
---|---|---|---|---|---|
Temperature | 15–60 °C | 800–1000 °C | 300–900 °C | 700–1000 °C | 180–250 °C |
Main products | stabilized sludge and biogas (CH4, CO2, H2O) | ash and flue gases (CO2, H2O, CO, NOx, SOx, PM) | bio-char, bio-oil and biogas (H2, CH4, CO2) | bio-char, tar and syngas (H2, CO, CH4, CO2) | HTC coal |
Harmful substances | pathogens, heavy metals | heavy metals: mainly in the solid fraction and traces in the gas fraction | benzenes, phenols, furans, aldehydes and ketones. | ||
Heating value | biogas: 15–27 MJ/m3 | SS: 8–12 MJ/kgDM AS: 14–16 MJ/kgDM RS: 17–18 MJ/kgDM | bio-oil: 30–37 MJ/kg biogas: 15–20 MJ/m3 | syngas: 10–20 MJ/m3 | HTC coal: 10–15 MJ/kg |
Size of Agglomeration | Number of Agglomerations | Drainage Basin | |
---|---|---|---|
Danube River | Adriatic Sea | ||
ES ≥ 150,000 | 4 | 2 | 2 |
50,000 ≤ ES < 150,000 | 16 | 9 | 7 |
15,000 ≤ ES < 50,000 | 43 | 19 | 24 |
10,000 ≤ ES < 15,000 | 28 | 11 | 17 |
2000 ≤ ES < 10,000 | 190 | 78 | 112 |
ES < 2000 | 486 | 301 | 185 |
Total | 767 | 420 | 347 |
WWTP | Split | Rijeka | Osijek | Varaždin | Velika Gorica | Pula-Nord | ||
---|---|---|---|---|---|---|---|---|
Low | High | |||||||
Capacity, PE | 275,000 | 200,000 | 170,000 | 127,000 | 74,000 | 13,264 | 58,000 | |
Hydraulic Load | ||||||||
Domestic wastewater, m3/d | n/a | 18,060 | 14,700 | n/a | 6876 | 1715 | 7000 | |
Industrial wastewater, m3/d | n/a | 9754 | 7950 | n/a | 1749 | 0 | 0 | |
Total wastewater, m3/d | 34,650 | 27,814 | 22,650 | 19,849 | 8625 | 1715 | 7000 | |
Infiltration, m3/d | 14,850 | 8241 | 11,350 | 11,909 | 3434 | 744 | 3000 | |
Total hydraulic load, m3/d | 49,500 | 36,055 | 34,000 | 31,758 | 12,059 | 2459 | 10,000 | |
Physicochemical Load | ||||||||
Chemical oxygen demand (COD) | mg/L | 658 | 698 | 633 | 540 | 791 | 647 | 696 |
kg/d | 32,571 | 25,176 | 21,522 | 17,147 | 9538 | 1592 | 6960 | |
Biochemical oxygen demand (BOD5) | mg/L | 329 | 304 | 300 | 240 | 368 | 324 | 348 |
kg/d | 16,286 | 10,968 | 10,200 | 7616 | 4438 | 796 | 3480 | |
Total suspended solids (TSS) | mg/L | 384 | 442 | 350 | 293 | 491 | 378 | 406 |
kg/d | 19,008 | 15,946 | 11,900 | 9310 | 5919 | 928 | 4060 | |
Total nitrogen (N) | mg/L | 60 | 53 | 55 | 39 | 64 | 59.3 | 63.8 |
kg/d | 2970 | 1898 | 1870 | 1244 | 777 | 146 | 638 | |
Total phosphorous (P) | mg/L | 10 | 9 | 9 | 7.8 | 11 | 9.7 | 10.4 |
kg/d | 495 | 331 | 306 | 249 | 131 | 23.9 | 104 | |
Technologies | ||||||||
Planned treatment stage | Secondary | Secondary | Tertiary | Tertiary | Tertiary | Secondary | ||
Sludge stabilization * | AND | AND | AND | AND | AND | AD | ||
Electricity consumption, kWh/PE | 37.2 | 46.6 | 43.1 | 40.2 | 47.6 | 43.5 | ||
By-Products | ||||||||
Sewage sludge, t/y | 6500 | 5120 | 3450 | 3285 | 1661 | 645 | ||
Debris and grit, t/y | n/a | 1400 | 1200 | 902 | 500 | 164 | ||
Sand, t/y | n/a | 634 | 540 | 451 | 750 | 103 | ||
Grease, t/y | n/a | 372 | 310 | 262 | 250 | 40 | ||
Biogas, m3/y (×1000) | 1600,000 | 1170,000 | 1022,000 | 931,000 | 533,000 | - |
Parameter | WWTP Zagreb | WWTPs Germany | Unit |
---|---|---|---|
Dry matter | 29.5–34.8 | 30.5 | % |
Volatile matter | n.a. | 30 | % |
Heating value | 8.2–9.1 | 10–12 | MJ/kgDM |
pH-value | 11.6–12.9 | 7.7 | - |
Organic matter | n.a. | 45–80 | % DM |
Carbon, C | 145–188 | 330–500 | g/kgDM |
Oxygen, O | n.a. | 100–200 | g/kgDM |
Hydrogen, H | n.a. | 30–40 | g/kgDM |
Nitrogen, N | 26.0–35.1 | 20–60 | g/kgDM |
Phosphorus, P | 21.5–30.8 | 2–55 | g/kgDM |
Magnesium, Mg | n.a. | 9.17 | g/kgDM |
Potassium, K | n.a. | 2.63 | g/kgDM |
Calcium, Ca | n.a. | 71 | g/kgDM |
Cadmium, Cd | <2 | 1.5–4.5 | mg/kgDM |
Chromium, Cr | 22.5–31.1 | 50–80 | mg/kgDM |
Zinc, Zn | 526–711 | 100–300 | mg/kgDM |
Lead, Pb | 62.1–74.1 | 70–100 | mg/kgDM |
Copper, Cu | 180–496 | 300–350 | mg/kgDM |
Nickel, Ni | 26.5–31.1 | 30–35 | mg/kgDM |
Cobalt, Co | 9.8–11.9 | 6.53 | mg/kgDM |
Mercury, Hg | 1.01–1.52 | 0.3–2.5 | mg/kgDM |
Arsenic, As | 11.95–16.01 | 4–30 | mg/kgDM |
Antimony, Sb | n.a. | 5–30 | mg/kgDM |
Manganese, Mn | n.a. | 600–1500 | mg/kgDM |
Molybdenum, Mo | 2.42–3.02 | 3.9 | mg/kgDM |
Tin, Sn | n.a. | 30–80 | mg/kgDM |
Vanadium, V | n.a. | 10–100 | mg/kgDM |
Parameter | Input | Unit |
---|---|---|
Lower heating value | 20–25 | MJ/m3 |
Explosion limit in air | 6–12 | % |
Self-ignition temperature | 650–750 | °C |
Critical pressure | 54–59 | bar |
Critical temperature | 224–242 | K |
Density | 1.0–1.2 | kg/m3 |
Biogas composition | ||
-methane (CH4) | 55–70 | % |
-carbon dioxide (CO2) | 30–45 | % |
-hydrogen sulphide (H2S) | 0.5–1.0 | % |
-ammonia (NH3) | 0.05–0.10 | % |
-water vapour (H2O) | 1–5 | % |
WWTP | Sewage Sludge Quantity [tDM/year] | Evaporation Potential [kgW/m2year] | Sludge Solar Drying Capacity [kgDM/m2year] | Solar Drying Surface [m2] |
---|---|---|---|---|
Zagreb | 15,000 | 1115 | 558 | 26,900 |
Split | 6500 | 1523 | 762 | 8500 |
Rijeka | 5120 | 1297 | 649 | 7900 |
Osijek | 3450 | 919 | 460 | 7500 |
Parameter | Value | Unit |
---|---|---|
Electricity production | 4260 | MWh |
Heat production | 6390 | MWh |
Total efficiency of CHP plant | 80 | % |
Total rated thermal input of natural gas | 48,000 | GJ |
CO2 emissions factor for natural gas | 56.1 | kg/GJ |
CO2 emissions from CHP plant | 2693 | t |
Parameter | Value | Unit |
---|---|---|
Electricity generation from hard coal | 4260 | MWh |
Efficiency of thermal power plant | 36 | % |
Total rated thermal input from hard coal | 42,667 | GJ |
CO2 emissions factor for hard coal | 94.6 | kg/GJ |
CO2 emissions from thermal power plant | 4036 | t |
Thermal energy generation from extra light fuel oil | 6390 | MWh |
Efficiency of district heating | 90 | % |
Total rated thermal input of extra light fuel oil | 25,600 | GJ |
CO2 emissions factor for extra light fuel oil | 74.1 | kg/GJ |
CO2 emissions from district heating | 1897 | t |
Total CO2 emissions | 5933 | t |
Scenario | Mono-Incineration | Treatment in Cement Plants | Landfilling at Waste Management Centres | Unit |
---|---|---|---|---|
Factor | ||||
Sewage sludge treatment facilities | Zagreb, Split, Rijeka, Osijek | Koromačno, Kaštel Sućurac, Našice | Kaštijun, Marišćina, Babina Gora, Piškornica, Orlovnjak, Šagulje, Biljane Donje, Bikarac, Lučino, Zagreb | / |
Transport costs | trip cost per kilometre x number of trips per year | €/year | ||
Gate-fee | 100 | 30 | 62 | €/tDM |
Emissions | kilometres per year x emission factor for specific truck | tCO2/year | ||
Truck size (Bilan Carbone model) | Different truck capacities are considered: 0.46 t, 0.70 t, 1.24 t, 1.40 t, 2.37 t, 2.84 t, 4.69 t, 9.79 t, 11.62 t, 16.66 t and 25.0 t | / | ||
Number of trips/year | The amount of dried sewage sludge / truck capacity | / |
WWTP Size (PE) | 2000–10,000 | 10,000–15,000 | 15,000–150,000 | >150,000 | Total | |
---|---|---|---|---|---|---|
WWTP number | 190 | 28 | 59 | 4 | 281 | |
Lowest costs | TMP | 0 | 0 | 0 | 0 | 0 |
CMP | 67 | 10 | 32 | 4 | 113 | |
BAU | 123 | 18 | 27 | 0 | 168 | |
Lowest CO2 emissions | TMP | 71 | 11 | 22 | 4 | 108 |
CMP | 16 | 3 | 5 | 0 | 24 | |
BAU | 103 | 14 | 32 | 0 | 149 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đurđević, D.; Blecich, P.; Jurić, Ž. Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies 2019, 12, 1927. https://doi.org/10.3390/en12101927
Đurđević D, Blecich P, Jurić Ž. Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies. 2019; 12(10):1927. https://doi.org/10.3390/en12101927
Chicago/Turabian StyleĐurđević, Dinko, Paolo Blecich, and Željko Jurić. 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia" Energies 12, no. 10: 1927. https://doi.org/10.3390/en12101927
APA StyleĐurđević, D., Blecich, P., & Jurić, Ž. (2019). Energy Recovery from Sewage Sludge: The Case Study of Croatia. Energies, 12(10), 1927. https://doi.org/10.3390/en12101927