A Novel Approach to Arcing Faults Characterization Using Multivariable Analysis and Support Vector Machine
Abstract
:1. Introduction
2. Bibliographic Review about Arcing Faults on TLs
3. Mathematical Bases of the Proposed Algorithm
4. Theoretical Modeling and Simulation of Arc and EPS Used
4.1. Arc
4.2. Signals and Simulated EPS
5. Results
5.1. Analyzing PCA
5.2. Classification Based on a Support Vector Machine
6. Autoreclosure Flow Chart on TL
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
IEEE | Institute of Electrical and Electronics Engineers |
EPS | Electric power system |
MA | Multivariable analysis |
DT | Dead time |
THD | Total harmonic distortion |
EHV | Extra high voltage |
ATP | Alternative transients program |
TL | Transmission Line |
SVM | Support vector machine |
WT | Wavelet transform |
DWT | Discrete wavelet transform |
SPAR | Single-pole automatic reclosure |
SPT | Signal Processing Techniques |
DFT | Discrete Fourier transform |
HDI | Harmonic distortion index |
KBT | Karen-bell transform |
SE | Spectral energy |
FL | Fuzzy logic |
FT | Fourier transform |
ANN | Artificial neural network |
GT | Gabor transform |
EMD | Empirical mode decomposition |
WPT | Wavelet packet transform |
PCA | Principal component analysis |
PC | Principal component |
R | Variance-covariance matrix |
Standardized fault matrix | |
Xtrai | Original fault signal |
X | Original fault matrix |
t, m, p | Common indices. |
Ψ | Eigenvectors matrix |
U | Eigenvalues matrix |
T | Transposed |
Thv | Threshold value |
Ivar | Index value |
db6 | Mother wavelet daubechies 6 |
d | Distance from permanent or temporary fault to relay location |
w | Normal vector of plane |
b | Bias |
Xmax | Maximum value of the original matrix X |
VL | Voltage level |
g | Conductance |
τ | Time constant |
G | Stationary conductance of the arc |
uo | Constant voltage |
ro | Resistive component of the arc |
i | Arc current |
l | Length of the arc |
Vp | Voltage parameter |
Ip | Peak value of the secondary arc current |
References
- Glover, J.D.; Sarma, M.S.; Overbye, T. Power Systems Analysis and Design, 4th ed.; Thomson-Engineering: Cinderford, UK, 2007. [Google Scholar]
- IEEE Power System Relaying Committee Working Group. Single-phase tripping and auto re-closing of transmission lines. IEEE Trans. Power Deliv. 1992, 7, 182–192. [Google Scholar] [CrossRef]
- Esztergalyos, J.; Andrichak, J.; Colwel1, D.H.; Dawson, D.C.; Jodice, J.A.; Mustaphi, T.J.M.K.K.; Nai, G.R.; Politis, A.; Pope, J.W.; Rockefeller, G.D.; et al. Single phase tripping and auto reclosing of transmission lines; IEEE Committee report. IEEE Trans. Power Deliv. 1992, 7, 182–192. [Google Scholar]
- Kizilcay, M.; Priok, T. Digital simulation of fault arcs in power systems. Eur. Trans. Electr. Power 1991, 1, 55–60. [Google Scholar] [CrossRef]
- Thomas, D.W.P.; Pereira, E.T.; Christopoulos, C.; Howe, A.F. The simulation of circuit breaker switching using a composite Cassie-modified Mayr model. IEEE Trans. Power Deliv. 1995, 10, 1829–1835. [Google Scholar] [CrossRef]
- Dudurych, I.M.; Gallagher, T.J.; Rosolowski, E. Arc Effect on Single-Phase Reclosing time of a UHV power transmission line. IEEE Trans. Power Deliv. 2004, 19, 854–860. [Google Scholar] [CrossRef]
- Schavemaker, P.H.; Van der Slui, L. An Improved Mayr-Type arc model based on current-zero measurements. IEEE Trans. Power Deliv. 2000, 15, 580–584. [Google Scholar] [CrossRef]
- Bo, Z.Q.; Aggarwal, R.K.; Johns, A.T.; Zhang, B.H.; Ge, Y.Z. New concept in transmission line reclosure using highfrequency fault transients. IEE Proc. Gener. Transm. Distrib. 1997, 144, 351–356. [Google Scholar] [CrossRef]
- Russel, B.D.; Council, M.E. Power System Control and Protection; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Jena, P.; Pradhan, A.K. Directional relaying during power swing and single-pole tripping. In Proceedings of the International Conference on Power Systems, Kharagpur, India, 1–6 December 2009. [Google Scholar]
- Adly, A.R.; El Sehiemy, R.A.; Abdelaziz, A.Y. A negative sequence superimposedpilot protection technique during single pole tripping. Electr. Power Syst. Res. 2016, 137, 175–189. [Google Scholar] [CrossRef]
- IEEE Power Systems Relaying Committee. Automatic reclosing of transmission lines. IEEE Trans. Power Appar. Syst. 1984, PAS-103, 234–245. [Google Scholar] [CrossRef]
- Ali, M.H.; Murata, T.; Tamura, J. Transient stability enhancement by fuzzy logic controlled SMES considering coordination with optimal reclosing of circuit breakers. IEEE Trans. Power Deliv. 2008, 23, 631–640. [Google Scholar] [CrossRef]
- Portela, C.M.; Santiago, N.H.C.; Oliveira, O.B.; Dupont, C.J. Modeling of arc extinction in air insulation. IEEE Trans. Electr. Insul. 1992, 27, 457–463. [Google Scholar] [CrossRef]
- Eissa, M.M.; Malik, O.P. Experimental results of a supplementary technique for auto-reclosing EHV/UHV transmission lines. IEEE Trans. Power Deliv. 2002, 17, 702–707. [Google Scholar] [CrossRef]
- IEEE Power and Energy Society. IEEE Guide for Automatic Reclosing of Circuit Breakers for AC Distribution and Transmission Lines; IEEE Std C37.104-2012; IEEE Power Engineerng Society: Piscataway, NJ, USA, 6 July 2012. [Google Scholar]
- Tsuboi, T.; Takami, J.; Okabe, S.; Aoki, K.; Yamagata, Y. Study on a field data of secondary arc extinction time for large-sized transmission lines. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2277–2286. [Google Scholar] [CrossRef]
- Nagpal, M.; Manuel, S.H.; Bell, B.; Barone, R.; Henville, C.; Ghangass, D. Field verification of secondary arc extinction logic. IEEE Trans. Power Deliv. 2015, 31, 1864–1872. [Google Scholar] [CrossRef]
- Choudhury, P. Alberta Interconnected Electric System Protection Standard; Revision 0; AESO Engineering Standard: Calgary, AB, Canada, 1 December 2004. [Google Scholar]
- Khodabakhchian, B. EHV Single-pole switching: It is not only a matter of secondary arc extinction. In Proceedings of the International Power System Transient Conf., IPST2013, Vancouver, BC, Canada, 18–20 July 2013. [Google Scholar]
- Kappenman, J.G.; Sweezy, G.A.; Koschik, V.; Mustaphi, K.K. Staged fault tests with single phase reclosing on the Winnipeg-Twin cities 500kV interconnection. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 662–673. [Google Scholar] [CrossRef]
- Williston, D.; Finney, D. Consequences of out-of-phase reclosing on feeders with distributed generators. In Proceedings of the 66th Annual Georgia Tech Protective Relaying Conference, Atlanta, GA, USA, 25–27 April 2012. [Google Scholar]
- Taylor, C.W.; Mittlestadt, W.A.; Lee, T.N.; Hardy, J.E.; Glavitsch, H.; Stranne, G.; Hurley, J.D. Single-pole switching for stability and reliability. IEEE Trans. Power Syst. 1986, 1, 25–36. [Google Scholar] [CrossRef]
- Adly, A.R.; El-Sehiemy, R.A.; Abdelaziz, A.Y.; Kotb, S.A. An Accurate Technique for Discrimination between Transient and Permanent Faults in Transmission Networks. Electr. Power Compon. Syst. 2017. [Google Scholar] [CrossRef]
- Ghaffarzadeh, N. A new method for recognition of arcing faults in transmission lines using wavelet transform and correlation coefficient. Indones. J. Electr. Eng. Inform. 2013, 1, 1–7. [Google Scholar] [CrossRef]
- Fenghua, G.; Shibin, G.; Shuping, L.; Nana, C. A novel technique to distinguish between transient and permanent faults based on signal wavelet singularity detection. In Proceedings of the International Conference on Energy and Environment Technology, Guilin, China, 16–18 October 2009; pp. 35–39. [Google Scholar]
- Jamali, S.; Ghaffarzadeh, N. Adaptive single pole autoreclosing using discrete wavelet transform. Eur. Trans. Electr. Power 2011, 21, 973–986. [Google Scholar] [CrossRef]
- Yu, I.K.; Song, Y.H. Development of novel adaptive single-pole autoreclosure schemes for extra high voltage transmission systems using wavelet transform analysis. Electr. Power Syst. Res. 1998, 47, 11–19. [Google Scholar] [CrossRef]
- Pasand, M.S.; Kadivar, A. Design of an online adaptive auto-reclose algorithm for HV transmission lines. In Proceedings of the International Conference on Power India, New Delhi, India, 10–12 April 2006. [Google Scholar]
- Jamali, S.; Ghaffarzadeh, N.A. Wavelet packet based method for adaptive single-pole auto-reclosing. J. Zhejiang Univ. Sci. (Comput. Electron.) 2010, 11, 1016–1024. [Google Scholar] [CrossRef]
- Adly, A.R.; El Sehiemy, R.A.; Abdelaziz, A.Y.; Kotb, S.A. Fast fault identification scheme using Karen Bell transformation in conjunction with discrete wavelet transform in transmission lines. In Proceedings of the International Middle East Power Systems Conference, Mansoura, Egypt, 15–17 December 2015; pp. 1–7. [Google Scholar]
- Yu, I.K.; Song, Y.H. Wavelet transform and neural network approach to developing adaptive single-pole autoreclosing schemes for EHV transmission systems. IEEE Power Eng. Rev. 1998, 18, 62–64. [Google Scholar] [CrossRef]
- Frimpong, E.A.; Okyere, P.Y.; Anto, E.K. Adaptive single-pole autoreclosure scheme based on wavelet transform and multilayer perceptron. J. Sci. Technol. 2010, 30, 102–110. [Google Scholar] [CrossRef]
- Lan, H.; Ai, T.; Li, Y. Single phase adaptive reclosure of transmission lines based on EMD approximate entropy and LSSVM with BCC. In Proceedings of the International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009; pp. 1–4. [Google Scholar]
- Morales, J.A.; Orduña, E.A.; Rehtanz, C.; Cabral, R.J.; Bretas, A.S. Comparison Between PCA and WT Filtering Methods for Lightning Stroke Classification on Transmission Lines. In Proceedings of the SIPDA, XII International Symposium on Lightning Protection, Belo Horizonte, Brazil, 7–11 October 2013. [Google Scholar]
- Morales, J.A.; Orduña, E.A.; Rehtanz, C.; Cabral, R.J.; Bretas, A.S. Comparison between Principal Component Analysis and WaveletTransform ‘Filtering Methods for Lightning Stroke Classification onTransmission Lines. Electr. Power Syst. Res. 2015, 118, 37–46. [Google Scholar] [CrossRef]
- Ngamsanroaj, K.; Premrudeepreechacharn, S.; Watson, N.R. 500 kV single phase reclosing evaluation using simplified arc model. Emerg. Technol. Adv. Eng. 2004, 4, 1–12. [Google Scholar]
- Ahn, S.; Kim, C.; Aggarwal, R.K.; Johns, A.T. An alternative approach to adaptive single pole auto-reclosing in high voltage transmission system based on variable dead time control. IEEE Trans. Power Deliv. 2001, 16, 676–686. [Google Scholar] [CrossRef]
- Zhalefar, F.; Zadeh, M.D.; Sidhu, T.A. High-speed adaptive single-phase reclosing technique based on local voltage phasors. IEEE Trans. Power Deliv. 2015, 32, 1203–1211. [Google Scholar] [CrossRef]
- Naimi, H.M.; Hasanzadeh, S.; Pasand, M.S. Discrimination of arcing faults on overhead transmission lines for single pole auto-reclosure. Eur. Trans. Electr. Power 2013, 23, 1523–1535. [Google Scholar]
- Radojevi, Z.M. Numerical algorithm for adaptive single pole autoreclosure based on determining the secondary arc extinction time. Electr. Power Compon. Syst. 2006, 34, 739–745. [Google Scholar] [CrossRef]
- Jamali, S.; Parham, A. New approach to adaptive single pole auto-reclosing of power transmission lines. IET Gener. Transm. Distrib. 2010, 4, 115–122. [Google Scholar] [CrossRef]
- Radojevi, Z.; Shin, J. New digital algorithm for adaptive re-closing based on the calculation of the faulted phase voltage total harmonic distortion factor. IEEE Trans. Power Deliv. 2007, 22, 37–41. [Google Scholar] [CrossRef]
- Khodadadi, M.; Noori, M.R.; Shahrtash, S. A non-communication adaptive single-pole autoreclosure scheme based on the ACUSUM algorithm. IEEE Trans. Power Deliv. 2013, 28, 2526–2533. [Google Scholar] [CrossRef]
- Luxenburger, R.; Schegner, P. Determination of secondary arc extinction time and characterization of fault conditions of single-phase autoreclosures. In Proceedings of the International Conference on Future Power Systems, Amsterdam, The Netherlands, 18 November 2005; pp. 1–5. [Google Scholar]
- Golshan, M.H.; Golbon, N. Detecting secondary arc extinction time by analyzing low frequency components of faulted phase voltage or sound phase current waveforms. Electr. Eng. 2006, 88, 141–148. [Google Scholar] [CrossRef]
- Jamali, S.; Parham, A. One terminal digital algorithm for adaptive single pole auto-reclosing based on zero sequence voltage. Iran. Electr. Electron. Eng. 2008, 4, 71–78. [Google Scholar]
- Chen, Z.; Zhang, B.H.; Bo, Z.Q.; Redfern, M.A. Adaptive optimal reclosure based on analysis of fault current transients. In Proceedings of the 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), Toronto, ON, Canada, 13–17 July 2003; pp. 2118–2121. [Google Scholar]
- Lin, X.; Wang, B.; Bo, Z.Q.; Klimek, A. An intelligent adaptive reclosure scheme for high voltage transmission lines. In Proceedings of the 2007 International Conference on Intelligent Systems Applications to Power Systems, Niigata, Japan, 5–8 November 2007; pp. 1–6. [Google Scholar]
- Ali, A.J.; Allu, A.A.; Antar, R.K. Fuzzy logic technique based single phase autoreclosing protection system of a double circuit transmission line. In Proceedings of the International Conference on Electrical, Communication, Computer, Power, and Control Engineering, Mosul, Iraq, 17–18 December 2013; pp. 31–36. [Google Scholar]
- Zahlay, F.D.; Rama Rao, K.S.; Ibrahim, T.B. A new intelligent autoreclosing scheme using artificial neural network and Taguchi’s methodology. IEEE Trans. Ind. Appl. 2010, 47, 306–313. [Google Scholar] [CrossRef]
- Zoric, K.J.; Jejina, N.D.; Djuric, M.B. Secondary arc faults detection and determine arc extinction time on overhead lines using neural network. Electr. Mach. Power Syst. 2000, 28, 79–85. [Google Scholar]
- Kawady, T.A.; Elkalashy, N.I.; Ibrahim, A.E.; Taalab, A.I. Arcing fault identification using combined Gabor Transform-neural network for transmission line. Int. J. Electr. Power Energy Syst. 2014, 61, 248–258. [Google Scholar] [CrossRef]
- Jollife, I. Principal Component Analysis; Springer: Berlin, Germany, 1986. [Google Scholar]
- Cassie, A.M. A new theory of rupture and circuit severity. CIGRE Rep. 1939, 102, 2–14. [Google Scholar]
- Mayr, O. Beiträge zur theorie des statischen und des dynamischen Liechtbogens. Arch. Elecktrotechnic. 1943, 37, 588–608. [Google Scholar] [CrossRef]
- Goldberg, S.; Horton, W.F.; Tziouvaras, D. A computer model of the secondary arc in single phase operation of transmission lines. IEEE Trans. Power Deliv. 1989, 4, 286–295. [Google Scholar] [CrossRef]
- Jones, G.R. High Pressure Arcs in Industrial Devices; Cambridge University Press: London, UK, 1988. [Google Scholar]
- Jones, G.R.; Fang, M.T.C. The physics of high-power arcs. Rep. Prog. Phys. 1980, 43, 1415–1465. [Google Scholar] [CrossRef]
- CIGRE WG 13.01. Practical application of arc physics in circuit breakers. Survey of calculation methods and application guide. Electra 1988, 118, 63–79. [Google Scholar]
- ATP DRAW Version 3.5 for Windows 9x/NT/2000/XP Users’ Manual; SINTEF Energy Research–Norwegian Univ. Sci. Technol.: Trondheim, Norway, 1999.
- Marti, J.R. Accurate modeling of frequency-dependent transmission lines in electromagnetic transient simulations. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 147–157. [Google Scholar] [CrossRef]
Vector Component | PCA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | … | 20 | 21 | 22 | 23 | 24 | |
1 | −0.001 | −0.144 | −0.034 | 0.065 | 0.190 | 0.094 | … | −0.001 | 0.072 | 0.019 | −0.003 | 0.005 |
2 | 0.000 | −0.148 | 0.075 | 0.121 | 0.340 | 0.067 | … | −0.014 | 0.025 | 0.016 | 0.063 | −0.019 |
3 | −0.001 | −0.156 | 0.064 | 0.115 | 0.301 | 0.179 | … | −0.075 | 0.078 | 0.067 | 0.156 | −0.075 |
4 | −0.001 | −0.173 | 0.033 | 0.148 | 0.276 | 0.252 | … | −0.169 | 0.151 | −0.001 | 0.008 | 0.012 |
5 | −0.001 | −0.222 | 0.056 | 0.207 | 0.356 | 0.251 | … | 0.017 | −0.178 | −0.004 | 0.034 | −0.127 |
6 | −0.001 | −0.158 | 0.182 | 0.106 | 0.294 | 0.192 | … | −0.111 | 0.021 | 0.247 | −0.036 | −0.092 |
7 | −0.001 | −0.150 | 0.176 | 0.192 | 0.345 | 0.164 | … | −0.108 | 0.028 | −0.053 | 0.166 | 0.005 |
8 | −0.001 | −0.076 | −0.076 | 0.149 | 0.399 | 0.206 | … | −0.128 | 0.063 | −0.042 | 0.094 | −0.033 |
9 | −0.001 | −0.076 | −0.094 | −0.011 | 0.452 | 0.246 | … | 0.035 | −0.020 | −0.146 | 0.147 | 0.247 |
10 | 0.000 | −0.095 | −0.051 | 0.147 | 0.396 | 0.212 | … | −0.036 | 0.078 | −0.015 | 0.059 | 0.000 |
11 | −0.001 | −0.083 | −0.026 | 0.044 | 0.210 | 0.166 | … | −0.065 | −0.094 | 0.156 | 0.242 | −0.184 |
12 | −0.001 | −0.112 | 0.020 | 0.171 | 0.179 | 0.353 | … | −0.026 | 0.033 | −0.052 | −0.108 | −0.027 |
13 | 0.000 | −0.112 | 0.008 | 0.172 | 0.174 | 0.212 | … | −0.090 | 0.268 | 0.256 | 0.156 | −0.134 |
14 | −0.001 | −0.101 | −0.014 | 0.166 | 0.185 | 0.241 | … | −0.054 | −0.045 | −0.221 | 0.239 | −0.222 |
15 | −0.001 | −0.100 | −0.040 | 0.105 | 0.221 | 0.241 | … | −0.093 | −0.186 | −0.094 | 0.046 | 0.121 |
16 | −0.001 | −0.084 | −0.070 | 0.119 | 0.243 | 0.265 | … | −0.220 | 0.115 | 0.251 | 0.069 | 0.072 |
17 | −0.001 | −0.066 | −0.094 | −0.223 | 0.249 | 0.150 | … | −0.094 | 0.124 | 0.052 | 0.085 | −0.018 |
18 | −0.001 | −0.100 | −0.039 | −0.091 | 0.212 | 0.305 | … | 0.115 | 0.156 | 0.011 | 0.121 | −0.159 |
19 | 0.000 | −0.145 | 0.075 | 0.108 | 0.173 | 0.095 | … | −0.088 | 0.291 | 0.011 | 0.227 | −0.211 |
20 | 0.000 | −0.147 | 0.073 | 0.107 | 0.183 | 0.092 | … | −0.092 | 0.085 | 0.001 | 0.009 | 0.039 |
… | … | … | … | … | … | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … | … | … | … | … | … |
44 | −0.238 | −0.079 | −0.037 | 0.159 | 0.492 | 0.297 | … | 0.043 | 0.146 | −0.067 | 0.021 | 0.045 |
45 | −0.004 | −0.088 | −0.010 | 0.072 | 0.232 | 0.245 | … | −0.002 | −0.157 | 0.108 | 0.178 | −0.275 |
46 | −0.200 | −0.067 | −0.118 | 0.288 | 0.331 | 0.304 | … | −0.067 | 0.080 | −0.170 | −0.128 | 0.052 |
47 | −0.224 | 0.016 | 0.036 | 0.310 | 0.252 | 0.251 | … | −0.147 | 0.395 | 0.093 | 0.162 | −0.026 |
48 | −0.208 | −0.127 | −0.026 | 0.238 | 0.340 | 0.244 | … | −0.063 | 0.055 | −0.255 | 0.185 | −0.267 |
49 | −0.150 | −0.034 | −0.043 | 0.211 | 0.377 | 0.335 | … | 0.098 | −0.114 | −0.088 | −0.102 | 0.287 |
50 | −0.199 | −0.037 | −0.147 | 0.247 | 0.314 | 0.242 | … | −0.188 | 0.115 | 0.159 | −0.019 | 0.197 |
51 | −0.048 | −0.047 | −0.203 | −0.284 | 0.416 | 0.166 | … | −0.060 | 0.236 | 0.001 | −0.019 | 0.124 |
52 | −0.027 | −0.129 | −0.149 | −0.029 | 0.422 | 0.495 | … | 0.233 | 0.367 | −0.097 | 0.104 | −0.253 |
53 | −0.025 | −0.087 | −0.033 | 0.075 | 0.319 | 0.123 | … | −0.129 | 0.497 | 0.002 | 0.201 | −0.277 |
54 | −0.259 | −0.144 | 0.148 | 0.125 | 0.214 | −0.026 | … | −0.033 | 0.214 | 0.113 | 0.095 | 0.188 |
55 | −0.462 | −0.180 | −0.064 | 0.258 | 0.496 | 0.166 | … | −0.118 | 0.070 | 0.243 | 0.117 | 0.435 |
56 | −0.158 | −0.081 | 0.055 | 0.361 | 0.346 | 0.189 | … | −0.008 | 0.001 | 0.218 | 0.021 | 0.017 |
57 | −0.389 | −0.099 | 0.032 | 0.187 | 0.333 | −0.012 | … | 0.053 | −0.080 | −0.216 | 0.036 | 0.072 |
58 | −0.276 | −0.130 | −0.044 | 0.093 | 0.414 | 0.024 | … | −0.046 | 0.149 | −0.106 | −0.051 | −0.127 |
59 | −0.168 | −0.130 | −0.069 | 0.153 | 0.536 | 0.210 | … | 0.043 | 0.333 | −0.003 | 0.120 | −0.011 |
60 | −0.343 | −0.205 | 0.099 | 0.118 | 0.460 | 0.103 | … | 0.304 | 0.439 | −0.095 | 0.108 | −0.124 |
61 | −0.628 | −0.196 | −0.060 | 0.221 | 0.386 | −0.168 | … | 0.254 | 0.209 | −0.249 | 0.037 | −0.195 |
62 | −0.124 | −0.173 | 0.117 | 0.090 | 0.529 | 0.076 | … | −0.118 | 0.218 | −0.459 | 0.269 | −0.151 |
63 | −0.132 | −0.163 | 0.042 | 0.002 | 0.318 | 0.083 | … | −0.129 | 0.124 | −0.298 | 0.282 | −0.105 |
64 | −0.107 | −0.130 | 0.010 | −0.002 | 0.275 | 0.002 | … | −0.058 | 0.100 | −0.049 | 0.035 | 0.346 |
65 | 0.006 | −0.182 | −0.016 | −0.007 | 0.547 | −0.144 | … | −0.040 | 0.209 | −0.040 | 0.268 | 0.198 |
66 | −0.112 | −0.155 | −0.029 | −0.031 | 0.502 | 0.042 | … | −0.127 | 0.289 | 0.279 | −0.016 | 0.093 |
67 | −0.118 | −0.017 | −0.013 | 0.048 | 0.280 | −0.052 | … | 0.036 | 0.229 | 0.268 | 0.177 | 0.074 |
68 | −0.260 | −0.060 | 0.000 | −0.054 | 0.324 | −0.150 | … | −0.066 | 0.113 | 0.023 | 0.021 | 0.124 |
Vector Component. | PCA | Arcing First Fault Confidence | Arcing Secondary Fault Confidence | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | … | 22 | 23 | 24 | |||
1 | 0.383 | −0.012 | −0.048 | 0.030 | −0.108 | −0.009 | … | −0.001 | 0.003 | 0.027 | 1 | 0 |
2 | 0.383 | −0.012 | −0.048 | 0.030 | −0.110 | −0.011 | … | −0.003 | 0.004 | 0.023 | 1 | 0 |
3 | 0.383 | −0.013 | −0.049 | 0.030 | −0.109 | −0.007 | … | 0.000 | 0.003 | 0.034 | 1 | 0 |
4 | 0.384 | −0.012 | −0.050 | 0.030 | −0.115 | −0.011 | … | 0.001 | 0.002 | 0.025 | 0 | 1 |
5 | 0.384 | −0.011 | −0.057 | 0.028 | −0.115 | −0.017 | … | 0.004 | −0.009 | 0.019 | 1 | 0 |
6 | 0.386 | −0.016 | −0.055 | 0.029 | −0.121 | −0.017 | … | 0.003 | −0.005 | 0.020 | 1 | 0 |
7 | 0.386 | −0.014 | −0.052 | 0.039 | −0.116 | −0.028 | … | 0.011 | 0.015 | 0.028 | 1 | 0 |
8 | 0.386 | −0.016 | −0.055 | 0.032 | −0.125 | −0.012 | … | −0.001 | −0.003 | 0.013 | 1 | 0 |
9 | 0.388 | −0.012 | −0.054 | 0.033 | −0.134 | −0.018 | … | 0.002 | 0.001 | 0.026 | 0 | 1 |
10 | 0.387 | −0.017 | −0.064 | 0.031 | −0.119 | −0.022 | … | 0.004 | 0.006 | 0.030 | 1 | 0 |
11 | 0.391 | −0.017 | −0.062 | 0.030 | −0.133 | −0.015 | … | −0.008 | −0.004 | 0.033 | 1 | 0 |
12 | 0.392 | −0.017 | −0.062 | 0.035 | −0.124 | −0.024 | … | −0.001 | 0.001 | 0.033 | 1 | 0 |
13 | 0.394 | −0.006 | −0.065 | 0.041 | −0.133 | −0.014 | … | 0.003 | 0.004 | 0.029 | 1 | 0 |
14 | 0.396 | −0.010 | −0.058 | 0.042 | −0.137 | −0.019 | … | 0.011 | 0.016 | 0.027 | 1 | 0 |
15 | 0.400 | −0.015 | −0.061 | 0.040 | −0.150 | −0.011 | … | −0.002 | 0.003 | 0.038 | 1 | 0 |
16 | 0.398 | −0.021 | −0.055 | 0.037 | −0.148 | −0.012 | … | 0.011 | −0.007 | 0.025 | 1 | 0 |
17 | 0.401 | −0.017 | −0.065 | 0.039 | −0.154 | −0.010 | … | 0.010 | 0.003 | 0.025 | 1 | 0 |
18 | 0.401 | −0.021 | −0.069 | 0.038 | −0.152 | −0.013 | … | −0.009 | 0.002 | 0.038 | 1 | 0 |
19 | 0.384 | −0.012 | −0.047 | 0.029 | −0.107 | −0.008 | … | −0.001 | 0.003 | 0.027 | 1 | 0 |
20 | 0.391 | −0.014 | −0.053 | 0.037 | −0.129 | −0.013 | … | −0.003 | −0.002 | 0.037 | 1 | 0 |
21 | 0.716 | 0.014 | −0.080 | 0.097 | −0.195 | −0.099 | … | −0.025 | 0.013 | 0.089 | 1 | 0 |
22 | 0.599 | −0.035 | −0.095 | 0.039 | −0.220 | −0.012 | … | 0.010 | 0.048 | 0.044 | 1 | 0 |
23 | 0.705 | −0.024 | −0.087 | 0.039 | −0.167 | −0.028 | … | 0.044 | −0.040 | 0.028 | 1 | 0 |
24 | 0.803 | −0.053 | −0.093 | 0.048 | −0.158 | −0.019 | … | 0.008 | −0.013 | 0.008 | 1 | 0 |
25 | 0.784 | −0.022 | −0.076 | 0.055 | −0.180 | −0.034 | … | −0.008 | −0.021 | −0.072 | 1 | 0 |
26 | 0.952 | −0.031 | −0.074 | 0.039 | −0.083 | 0.044 | … | 0.002 | −0.017 | −0.006 | 1 | 0 |
27 | 0.863 | −0.029 | −0.079 | 0.057 | −0.145 | 0.007 | … | −0.003 | 0.019 | 0.060 | 1 | 0 |
28 | 0.890 | −0.023 | −0.079 | 0.037 | −0.108 | −0.019 | … | 0.001 | 0.003 | 0.032 | 1 | 0 |
29 | 0.782 | −0.027 | −0.081 | 0.037 | −0.134 | −0.012 | … | 0.000 | −0.012 | 0.038 | 1 | 0 |
30 | 0.886 | −0.003 | −0.068 | 0.038 | −0.104 | 0.011 | … | 0.042 | −0.015 | 0.009 | 1 | 0 |
31 | 1.000 | −0.015 | −0.068 | 0.041 | −0.077 | −0.006 | … | 0.011 | −0.006 | 0.011 | 1 | 0 |
32 | 0.854 | −0.020 | −0.061 | 0.040 | −0.120 | −0.016 | … | 0.022 | 0.011 | 0.013 | 1 | 0 |
33 | 0.875 | −0.014 | −0.067 | 0.043 | −0.119 | −0.005 | … | 0.002 | 0.005 | 0.021 | 1 | 0 |
34 | 0.785 | −0.031 | −0.059 | 0.033 | −0.137 | −0.007 | … | 0.018 | −0.014 | 0.024 | 1 | 0 |
35 | 0.775 | −0.022 | −0.068 | 0.038 | −0.152 | −0.010 | … | 0.013 | −0.026 | 0.016 | 1 | 0 |
36 | 0.846 | −0.031 | −0.075 | 0.036 | −0.117 | −0.007 | … | −0.008 | −0.043 | 0.015 | 1 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, J.; Muñoz, E.; Orduña, E.; Idarraga-Ospina, G. A Novel Approach to Arcing Faults Characterization Using Multivariable Analysis and Support Vector Machine. Energies 2019, 12, 2126. https://doi.org/10.3390/en12112126
Morales J, Muñoz E, Orduña E, Idarraga-Ospina G. A Novel Approach to Arcing Faults Characterization Using Multivariable Analysis and Support Vector Machine. Energies. 2019; 12(11):2126. https://doi.org/10.3390/en12112126
Chicago/Turabian StyleMorales, John, Eduardo Muñoz, Eduardo Orduña, and Gina Idarraga-Ospina. 2019. "A Novel Approach to Arcing Faults Characterization Using Multivariable Analysis and Support Vector Machine" Energies 12, no. 11: 2126. https://doi.org/10.3390/en12112126
APA StyleMorales, J., Muñoz, E., Orduña, E., & Idarraga-Ospina, G. (2019). A Novel Approach to Arcing Faults Characterization Using Multivariable Analysis and Support Vector Machine. Energies, 12(11), 2126. https://doi.org/10.3390/en12112126