Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites †
Abstract
:1. Introduction
2. Experimental Methods
2.1. Natural Aging
2.2. Thermal Conductivity Measurements
3. Simulation Methodology
4. Results and Discussion
4.1. Natural Aging Results
4.2. Measured Thermal Conductivities
4.3. Simulation Results
5. Summary, Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
cp | Specific heat (J/kg·K) |
k | Thermal conductivity (W/m·K) |
R | Thermal resistance (m2·K/W) |
q | Heat flux (W/m2) |
T | Temperature (°C) |
ρ | Density (kg/m3) |
Subscripts
c | Constant |
Abbreviations
COP | Center-of-panel |
HD | High-density |
HFM | Heat flow meter |
HFT | Heat flux transducer |
OSB | Oriented strand board |
PIR | Polyisocyanurate |
RH | Relative humidity |
U.S. | United States |
VIP | Vacuum insulation panel |
References
- Bordbari, M.J.; Seifi, A.R.; Rastegar, M. Probabilistic energy consumption analysis in buildings using point estimate method. Energy 2018, 142, 716–722. [Google Scholar] [CrossRef]
- International Energy Outlook 2018; U.S. Energy Information Administration: Washington, DC, USA, 2018.
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications–A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Alotaibi, S.S.; Riffat, S. Vacuum insulated panels for sustainable buildings: a review of research and applications. Int. J. Energy Res. 2014, 38, 1–19. [Google Scholar] [CrossRef]
- Lim, T.; Seok, J.; Kim, D.D. A comparative study of energy performance of fumed silica vacuum insulation panels in an apartment building. Energies 2017, 10, 2000. [Google Scholar] [CrossRef]
- Capozzoli, A.; Fantucci, S.; Favoino, F.; Perino, M. Vacuum insulation panels: Analysis of the thermal performance of both single panel and multilayer boards. Energies 2015, 8, 2528–2547. [Google Scholar] [CrossRef]
- Jelle, B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Alam, M.; Singh, H.; Limbachiya, M.C. Vacuum insulation panels (VIPs) for building construction industry—A review of the contemporary developments and future directions. Appl. Energy 2011, 88, 3592–3602. [Google Scholar] [CrossRef]
- Simmler, H.; Brunner, S. Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life. Energy Build. 2005, 37, 1122–1131. [Google Scholar] [CrossRef]
- Brunner, S.; Simmler, H. In situ performance assessment of vacuum insulation panels in a flat roof construction. Vacuum 2008, 82, 700–707. [Google Scholar] [CrossRef]
- Johansson, P.; Adl-Zarrabi, B.; Kalagasidis, A.S. Evaluation of 5 years’ performance of VIPs in a retrofitted building façade. Energy Build. 2016, 130, 488–494. [Google Scholar] [CrossRef]
- Zhang, T.T.; Ooms, M.; Korn, J.; Maclean, D.; Mooney, S.; Andre, S.; Mukhopadhyaya, P. Critical analysis of in situ performance of glass fiber core VIPs in extreme cold climate. Front. Energy Res. 2019, 7, 45. [Google Scholar]
- Biswas, K.; Desjarlais, A.; Smith, D.; Letts, J.; Yao, J.; Jiang, T. Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels. Appl. Energy 2018, 228, 1159–1172. [Google Scholar] [CrossRef]
- Berardi, U.; Tronchin, L.; Manfren, M.; Nastasi, B. On the effects of variation of thermal conductivity in buildings in the Italian construction sector. Energies 2018, 11, 872. [Google Scholar] [CrossRef]
- Lorenzati, A.; Fantucci, S.; Capozzoli, A.; Perino, M. The effect of temperature on thermal performance of fumed silica based vacuum insulation panels for buildings. Energy Procedia 2017, 111, 490–499. [Google Scholar] [CrossRef]
- Berardi, U. The impact of temperature dependency of the building insulation thermal conductivity in the Canadian climate. Energy Procedia 2017, 132, 237–242. [Google Scholar] [CrossRef]
- Fantucci, S.; Lorenzati, A.; Capozzoli, A.; Perino, M. Analysis of the temperature dependence of the thermal conductivity in vacuum insulation panels. Energy Build. 2019, 183, 64–74. [Google Scholar] [CrossRef]
- Biswas, K. Development and validation of numerical models for evaluation of foam-vacuum insulation panel composite boards, including edge effects. Energies 2018, 11, 2228. [Google Scholar] [CrossRef]
- ASTM C518-17. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Singh, S.N.; Ntiru, M.; Dedecker, K. Long term thermal resistance of pentane blown polyisocyanurate laminate boards. J. Cell. Plast. 2003, 39, 265–280. [Google Scholar] [CrossRef]
- Yrieix, B.; Morel, B.; Pons, E.J.E. VIP service life assessment: Interactions between barrier laminates and core material, and significance of silica core ageing. Energy Build. 2014, 85, 617–630. [Google Scholar] [CrossRef] [Green Version]
- ANSI/ASHRAE/IES Standard 90.1-2016. In Energy Standard for Buildings Except Low-Rise Residential Buildings; ASHRAE: New York, NY, USA, 2016.
Material | kc (W/m·K) | cp (J/kg·K) | ρ (kg/m3) |
---|---|---|---|
PIR | 0.0276 | 1590 | 70.8 |
HD board | 0.0305 | 1020 | 169.2 |
VIP | 0.0050 | 880 | 150.0 |
OSB | 0.1040 | 1884 | 656.0 |
Fiberglass | 0.0436 | 840 | 8.0 |
Gypsum | 0.1635 | 1087 | 549.5 |
Model Input | May 2017 | May 2018 | May 2019 |
---|---|---|---|
Constant k | 23% | 28% | 38% |
k(T) | 21% | 26% | 37% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, K.; Jogineedi, R.; Desjarlais, A. Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites. Energies 2019, 12, 2539. https://doi.org/10.3390/en12132539
Biswas K, Jogineedi R, Desjarlais A. Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites. Energies. 2019; 12(13):2539. https://doi.org/10.3390/en12132539
Chicago/Turabian StyleBiswas, Kaushik, Rohit Jogineedi, and Andre Desjarlais. 2019. "Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites" Energies 12, no. 13: 2539. https://doi.org/10.3390/en12132539
APA StyleBiswas, K., Jogineedi, R., & Desjarlais, A. (2019). Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites. Energies, 12(13), 2539. https://doi.org/10.3390/en12132539