A Frequency Locking Method for ICPT System Based on LCC/S Compensation Topology
Abstract
:1. Introduction
2. Analysis of LCC/S Compensation
2.1. The Lossless Model of LCC/S Compensation
2.2. The Loss Model of LCC/S Compensation
3. Analysis of Finite Element Simulation
4. Frequency Locking Method
5. Experimental Verification
5.1. Construction of ICPT System Experimental Platform
5.2. Verification of Constant Voltage Output Characteristic of LCC/S Compensation
5.3. Verification of Large-capacity and High-efficiency Transmission Characteristic of LCC/S Compensation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smeets, J.P.C.; Overboom, T.T.; Jansen, J.W.; Lomonova, E.A. Comparison of Position-Independent Contactless Energy Transfer Systems. IEEE Trans. Power Electron. 2012, 28, 2059–2067. [Google Scholar] [CrossRef]
- Chen, Q.; Wong, S.C.; Chi, K.T.; Ruan, X. Analysis, Design, and Control of a Transcutaneous Power Regulator for Artificial Hearts. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Covic, G.A.; Boys, J.T. Modern Trends in Inductive Power Transfer for Transportation Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Zhang, W.; Mi, C.C. Compensation Topologies of High-Power Wireless Power Transfer Systems. IEEE Trans. Veh. Technol. 2016, 65, 4768–4778. [Google Scholar] [CrossRef]
- Wang, C.S.; Stielau, O.H.; Covic, G. Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 2005, 52, 1308–1314. [Google Scholar] [CrossRef]
- Alireza, K.; Dusmez, S. Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles. IEEE Trans. Veh. Technol. 2012, 61, 3475–3489. [Google Scholar]
- Pantic, Z.; Bai, S.; Lukic, S.M. ZCS LCC-Compensated Resonant Inverter for Inductive-Power-Transfer Application. IEEE Trans. Ind. Electron. 2011, 58, 3500–3510. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Deng, J.; Nguyen, T.D.; Mi, C.C. A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer. IEEE Trans. Veh. Technol. 2015, 64, 2261–2273. [Google Scholar] [CrossRef]
- Li, W.; Zhao, H.; Deng, J.; Li, S.; Mi, C.C. Comparison Study on SS and Double-Sided LCC Compensation Topologies for EV/PHEV Wireless Chargers. IEEE Trans. Veh. Technol. 2016, 65, 4429–4439. [Google Scholar] [CrossRef]
- Luo, S.; Li, S.; Zhao, H. Reactive power comparison of four-coil, LCC and CLC compensation network for wireless power transfer. In Proceedings of the Emerging Technologies: Wireless Power Transfer IEEE, Chongqing, China, 20–22 May 2017; pp. 268–271. [Google Scholar]
- Lu, J.H.; Lin, P.; Li, X.K.; Li, W.J.; Zhu, G.R.; Wong, S.C.; Jiang, J.; Liu, F. Research on seamless transfer from CC to CV modes for IPT EV charging system based on double-sided LCC compensation network. In Proceedings of the Energy Conversion Congress and Exposition IEEE, Milwaukee, WI, USA, 18–22 September 2016; pp. 1–6. [Google Scholar]
- Lu, F.; Zhang, H.; Kan, T.; Hofmann, H.; Mei, Y.; Cai, L.; Mi, C. A high efficiency and compact inductive power transfer system compatible with both 3.3kW and 7.7kW receivers. In Proceedings of the Applied Power Electronics Conference and Exposition IEEE, Tampa, FL, USA, 26–30 March 2017; pp. 3669–3673. [Google Scholar]
- Kan, T.; Nguyen, T.D.; White, J.C.; Malhan, R.K.; Mi, C.C. A New Integration Method for an Electric Vehicle Wireless Charging System Using LCC Compensation Topology: Analysis and Design. IEEE Trans. Power Electron. 2017, 32, 1638–1650. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A high efficiency 3.3 kW loosely-coupled wireless power transfer system without magnetic material. In Proceedings of the Energy Conversion Congress and Exposition IEEE, Montreal, QC, Canada, 20–24 September 2015; pp. 2282–2286. [Google Scholar]
- Li, B.; Zhu, G.; Lu, J.; Li, W.; Kumar, G.R.; Wang, J. Output characteristics of LCC-S compensation network and its optimal parameters design in IPT system. J. Eng. 2017, 2017, 1576–1579. [Google Scholar] [CrossRef]
Geometric Parameter | Value |
---|---|
The inner diameter of the primary core/mm | 83 |
The outer diameter of the primary core/mm | 103 |
The inner diameter of secondary core/mm | 137 |
The outer diameter of secondary core /mm | 157 |
Height/mm | 50 |
Turns of coil | 46/46 |
Load/Ω | 100 | 110 | 120 | 130 | 140 |
---|---|---|---|---|---|
Voltage before compensation/V | 72.6 | 73.1 | 73.9 | 74.9 | 76.1 |
Voltage variation rate before compensation/% | 0 | 0.69 | 1.79 | 6.17 | 4.82 |
Voltage after compensation/V | 294.2 | 295.6 | 296.8 | 298.1 | 299.7 |
Voltage variation rate after compensation/% | 0 | 0.48 | 0.88 | 1.33 | 1.87 |
Load/Ω | 100 | 110 | 120 | 130 | 140 |
---|---|---|---|---|---|
Output power before compensation/W | 52.71 | 48.58 | 44.96 | 43.15 | 41.37 |
Output power after compensation/W | 865.54 | 794.36 | 734.09 | 683.57 | 641.57 |
Input power after compensation/W | 939.19 | 877.66 | 836.48 | 813.10 | 802.26 |
Efficiency after compensation/% | 92.16 | 90.51 | 87.76 | 84.07 | 79.97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, M.; Zhang, W.; Zhao, M.; Liu, J. A Frequency Locking Method for ICPT System Based on LCC/S Compensation Topology. Energies 2019, 12, 2626. https://doi.org/10.3390/en12132626
Li Y, Wang M, Zhang W, Zhao M, Liu J. A Frequency Locking Method for ICPT System Based on LCC/S Compensation Topology. Energies. 2019; 12(13):2626. https://doi.org/10.3390/en12132626
Chicago/Turabian StyleLi, Yansong, Minhao Wang, Weiwei Zhang, Mengmeng Zhao, and Jun Liu. 2019. "A Frequency Locking Method for ICPT System Based on LCC/S Compensation Topology" Energies 12, no. 13: 2626. https://doi.org/10.3390/en12132626
APA StyleLi, Y., Wang, M., Zhang, W., Zhao, M., & Liu, J. (2019). A Frequency Locking Method for ICPT System Based on LCC/S Compensation Topology. Energies, 12(13), 2626. https://doi.org/10.3390/en12132626