Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios
Abstract
:1. Introduction
2. Methods
2.1. Life Cycle Cost Calculation
2.2. Building Renovation Measures
2.3. Energy System Scenarios
2.3.1. District Heating Distribution
2.3.2. District Heating Production
2.3.3. Electricity Distribution
2.3.4. Electricity Production
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Parameter | Unit | Value | Reference |
---|---|---|---|
Exhaust ventilation | |||
Investment cost * | EUR | 24 000 | [40,41] |
O&M cost | EUR/y | 240 | * |
Lifetime | Year | 15 | |
MVHR system | |||
Investment cost ** | EUR | 180 000 | [40,41] |
O&M cost | EUR/y | 1 800 | * |
Lifetime | Year | 15 | |
EAHP | |||
Investment cost ** | EUR | 15 600 | *** |
O&M cost | EUR/y | 156 | * |
Lifetime | Year | 20 | |
EAHP pipes, valves and controller | |||
Investment cost ** | EUR | 5 400 | *** |
O&M cost | EUR/y | 54 | * |
Lifetime | Year | 30 | |
DHW tank | |||
Investment cost ** | EUR | 5 500 | [42] |
O&M cost | EUR/y | 55 | * |
Lifetime | Year | 20 |
Parameter | Unit | Value | Reference |
---|---|---|---|
DH distribution | |||
Cost distribution pipe 100–250 kW | EUR/m | 370 | [24] |
Cost distribution pipe 250 kW–1 MW | EUR/m | 460 | [24] |
Cost distribution pipe 1–5 MW | EUR/m | 640 | [24] |
Cost distribution pipe 5–25 MW | EUR/m | 1 185 | [24] |
Cost service pipe 50–100 kW | EUR/m | 379 | [24] |
Cost service pipe >100 kW | EUR/m | 413 | [24] |
Substation cost <1 MW | EUR/kW | 265 | [24] |
Lifetime | Year | 40 | [24] |
O&M cost | EUR/kWh | 0.0015 | [24] |
Biomass CHP | |||
Alpha-value | Electricity/heat | 0.35 | [25,26] |
Specific investment cost | EUR/kWel,net | 5 400 | [25,26] |
Lifetime | Year | 27.5 | [25,26] |
O&M fixed | EUR/kWel,net | 189.5 | [25,26] |
O&M variable | EUR/kWhel,net | 0.0061 | [25,26] |
Fuel cost | EUR/kWh | 0.016 | [3] |
Municipal waste CHP | |||
Alpha-value | Electricity/heat | 0.255 | [25,26] |
Specific investment cost | EUR/kWel,net | 10 000 | [25,26] |
Lifetime | Year | 27.5 | [25,26] |
O&M fixed | EUR/kWel,net | 365.65 | [25,26] |
O&M variable | EUR/kWhel,net | 0.02535 | [25,26] |
Fuel cost | EUR/kWh | −0.0125 | [25] |
Biomass HOB | |||
Specific investment cost | EUR/kW | 735 | [25,26] |
Lifetime | Year | 27.5 | [26] |
O&M fixed | EUR/kW | 22.75 | [25,26] |
O&M variable | EUR/kWh | 0.0007 | [25,26] |
Fuel cost | EUR/kWh | 0.025 | [3] |
Wind power | |||
Annual electricity production per installed power | kWh/kW | 2 850 | [26] |
Specific investment cost | EUR/kW | 1 260 | [29] |
O&M fixed | EUR/kW | 50 | [29] |
O&M variable | EUR/kWh | 0.026 | [29] |
Lifetime | Year | 27 | [43] |
Backup power gas | |||
Investment cost | EUR/kW | 650 | [25,26] |
Lifetime | Year | 25 | [25,26] |
O&M fixed | EUR/kW | 19.5 | [26] |
O&M variable | EUR/kWh | 0.006 | [26] |
Fuel cost | EUR/kWh | 0.06 | [30] |
Efficiency | % | 35 | [25,26] |
Backup power hydro | |||
Investment cost | EUR/kW | 265 | [32] |
Lifetime | Year | 50 | [32] |
O&M total | EUR/kWh | 0.02 | [32] |
References
- The European Commission. Directive 2010/31/EU on the Energy Performance of Buildings. 2010, pp. 1–35. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0031 (accessed on 16 July 2019).
- Boverket. wedish Building Code. BFS 2011:6. 2018. Available online: https://www.boverket.se/sv/lag--ratt/forfattningssamling/gallande/bbr---bfs-20116/ (accessed on 16 July 2019).
- Swedish Energy Agency. Energy in Sweden Facts and Figures 2018. 2018. Available online: http://www.energimyndigheten.se/en/facts-and-figures/publications/ (accessed on 16 July 2019).
- Gustafsson, M.; Thygesen, R.; Karlsson, B.; Ödlund, L. Rev-changes in primary energy use and CO2 emissions—An impact assessment for a building with focus on the swedish proposal for nearly zero energy buildings. Energies 2017, 10, 978. [Google Scholar] [CrossRef]
- Gustafsson, M.; Rönnelid, M.; Trygg, L.; Karlsson, B. CO2 emission evaluation of energy conserving measures in buildings connected to a district heating system—Case study of a multi-dwelling building in Sweden. Energy 2016, 111, 341–350. [Google Scholar] [CrossRef]
- Lidberg, T.; Gustafsson, M.; Myhren, J.A.; Olofsson, T.; Ödlund, L. Environmental impact of energy refurbishment of buildings within different district heating systems. Appl. Energy 2018, 227, 231–238. [Google Scholar] [CrossRef]
- Ramírez-Villegas, R.; Eriksson, O.; Olofsson, T. Life Cycle Assessment of Building Renovation Measures—Trade-off between Building Materials and Energy. Energies 2019, 12, 344. [Google Scholar] [CrossRef]
- Le Truong, N.; Gustavsson, L. Costs and primary energy use of heating new residential areas with district heat or electric heat pumps. Energy Procedia 2019, 158, 2031–2038. [Google Scholar] [CrossRef]
- Gustafsson, M.; Swing Gustafsson, M.; Myhren, J.A.; Bales, C.; Holmberg, S. Techno-economic analysis of energy renovation measures for a district heated multi-family house. Appl. Energy 2016, 177, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Paiho, S.; Pulakka, S.; Knuuti, A. Life-cycle cost analyses of heat pump concepts for Finnish new nearly zero energy residential buildings. Energy Build. 2017, 150, 396–402. [Google Scholar] [CrossRef]
- Statistics Sweden Number of Dwellings by Region, Type of Building and Period of Construction. Available online: https://www.scb.se/en/finding-statistics/statistics-by-subject-area/housing-construction-and-building/housing-construction-and-conversion/dwelling-stock/ (accessed on 2 July 2019).
- Hall, T.; Vidén, S. The Million Homes Programme: A review of the great Swedish planning project. Plan. Perspect. 2005, 20, 301–328. [Google Scholar] [CrossRef]
- ISO. ISO 15686-5:2017—Buildings and Constructed Assets—Service Life Planning—Part 5: Life Cycle Costing; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- CEN. EN 15459-1:2017—Energy Performance of Buildings—Economic Evaluation Procedure for Energy Systems in Buildings—Part 1: Calculation Procedures, Module M1-14; European Committee for Standardization: Brussels, Belgium, 2017. [Google Scholar]
- Lund, R.; Ilic, D.D.; Trygg, L. Socioeconomic potential for introducing large-scale heat pumps in district heating in Denmark. J. Clean. Prod. 2016, 139, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Lund, R.; Skaarup Östergaard, D.; Yang, X.; Vad Mathiesen, B. Comparison of Low-Temperature District Heating Concepts in a Long-Term Energy System Perspective. Int. J. Sustain. Energy Plan. Manag. 2017, 12, 5–18. [Google Scholar]
- Swing Gustafsson, M.; Gustafsson, M.; Myhren, J.A.; Dotzauer, E. Primary energy use in buildings in a Swedish perspective. Energy Build. 2016, 130, 202–209. [Google Scholar] [CrossRef]
- Andreasson, M.; Borgström, M.; Werner, S. Värmeanvändning i Flerbostadshus Och Lokaler 2009:4; Svensk Fjärrvärme: Stockholm, Sweden, 2009. [Google Scholar]
- Thermia Thermia Mega XL (in Swedish). Available online: http://www.thermia.se/produkter/thermia-mega.asp (accessed on 9 February 2015).
- Klein, S.; Beckman, A.; Mitchell, W.; Duffie, A. TRNSYS 17—A TRansient SYstems Simulation Program; Solar Energy Laboratory: Zoetermeer, The Netherlands; University of Wisconsin: Madison, WI, USA, 2011. [Google Scholar]
- Meteonorm. Global Meteorological Database for Engineers, Planners and Education. Available online: http://meteonorm.com/ (accessed on 15 October 2015).
- Eurostat. Labour costs annual data—NACE Rev.2. European Commission, 2018. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/tps00173 (accessed on 16 July 2019).
- Swing Gustafsson, M.; Myhren, J.A.; Dotzauer, E. Life cycle cost of heat supply to areas with detached houses—A comparison of district heating and heat pumps from an energy system perspective. Energies 2018, 11, 3266. [Google Scholar] [CrossRef]
- Danish Energy Agency; Energinet. Technology Data for Energy Transport. 2017. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-energy-transport (accessed on 16 July 2019).
- Nohlgren, I.; Herstad Svard, S.; Jansson, M.; Rodin, J. Electricity from New and Future Plants Elforsk Rapport 14:45; Elforsk: Stockholm, Sweden, 2014. [Google Scholar]
- Danish Energy Agency; Energinet. Technology Data for Energy Plants for Electricity and District Heating Generation. 2018. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and (accessed on 16 July 2019).
- Krönert, F.; Bruce, J.; Jakobsson, T.; Badano, A.; Helbrink, J. 100% Förnybart—En Rapport till Skellefteå Kraft (100% Renewable, in Swedish). 2017. Available online: https://www.skekraft.se/wp-content/uploads/2017/06/100_procent_fornybart_2040.pdf (accessed on 16 July 2019).
- Svenska Kraftnät Electricity Market—Statistics. Available online: https://www.svk.se/aktorsportalen/elmarknad/statistik/ (accessed on 13 September 2018).
- International Renewable Energy Agency. Renewable Power Generation Costs in 2017; IRENA: Abu Dhabi, UAE, 2018. [Google Scholar]
- Swedish Energy Agency. Övervakningsrapport Avseende Skattebefrielse för Vissa Biobränslen vid Användning som Bränsle för Uppvärmning år 2016. 2017. (In Swedish). Available online: http://epi6.energimyndigheten.se/PageFiles/54547/%C3%96vervakningsrapport%20avseende%20skattebefrielse%20f%C3%B6r%20flytande%20biodrivmedel%202016%202016-12009.pdf (accessed on 16 July 2019).
- North European Power Perspective, N. Stor Potential för Effekthöjning i Svensk Vattenkraft (in Swedish, “Great Potential for Power Increase in Swedish Hydropower”). Available online: http://nepp.se/pdf/Stor_potential_effekthojning.pdf (accessed on 21 March 2019).
- Krönert, F.; Helbrink, J.; Marklund, J.; Edfeldt, E.; Walsh, R.; Bitar, F.; Holtz, C.; Bruce, J. Ekonomiska Förutsättningar för Skilda Kraftslag (in Swedish, “Economic Conditions for Different Power Sources”); Sweco Energuide AB: Stockholm, Sweden, 2016. [Google Scholar]
- Dodoo, A.; Gustavsson, L.; Tettey, U.Y.A. Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building. Energy 2017, 135, 563–576. [Google Scholar] [CrossRef]
- Fotopoulou, A.; Semprini, G.; Cattani, E.; Schihin, Y.; Weyer, J.; Gulli, R.; Ferrante, A. Deep renovation in existing residential buildings through façade additions: A case study in a typical residential building of the 70s. Energy Build. 2018, 166, 258–270. [Google Scholar] [CrossRef]
- Thomsen, K.E.; Rose, J.; Mørck, O.; Jensen, S.Ø.; Østergaard, I.; Knudsen, H.N.; Bergsøe, N.C. Energy consumption and indoor climate in a residential building before and after comprehensive energy retrofitting. Energy Build. 2016, 123, 8–16. [Google Scholar] [CrossRef]
- Földváry, V.; Bukovianska, H.P.; Petráš, D. Analysis of Energy Performance and Indoor Climate Conditions of the Slovak Housing Stock before and after Its Renovation. Energy Procedia 2015, 78, 2184–2189. [Google Scholar] [CrossRef]
- Difs, K.; Bennstam, M.; Trygg, L.; Nordenstam, L. Energy conservation measures in buildings heated by district heating—A local energy system perspective. Energy 2010, 35, 3194–3203. [Google Scholar] [CrossRef]
- Åberg, M.; Henning, D. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings. Energy Policy 2011, 39, 7839–7852. [Google Scholar] [CrossRef]
- Lundström, L.; Wallin, F. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system. Appl. Energy 2016, 161, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Ruud, S. Economic Heating Systems for Low Energy Buildings—Calculation, Comparison and Evaluation of Different System Solutions; Contract No.: SP Report 2010:43; SP Technical Research Institute of Sweden: Boras, Sweden, 2010. [Google Scholar]
- Wahlström, Å. Teknikupphandling av Värmeåtervinning i Befintliga Flerbostadshus—Utvärdering; BeBo: Stockholm, Sweden, 2014. [Google Scholar]
- NIBE DHW Preparation Tank. Available online: http://www.nibe.se/Produkter/Ackumulatortankar/Produktsortiment/AKIL/ (accessed on 2 March 2015).
- Danish Energy Agency; Energinet. Technology Data for Individual Heating Installations. 2018. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-individual-heating-plants (accessed on 16 July 2019).
Heating and Ventilation System | Ref. | A | B | C |
---|---|---|---|---|
Mechanical ventilation | X | X | X | X |
Mechanical ventilation with heat recovery | X | |||
Exhaust air heat pump used for heating | X | X | ||
Exhaust air heat pump used for domestic hot water | X | |||
District heating | X | X | X | X |
Heating System | Ref. | A | B | C |
---|---|---|---|---|
District heating | ||||
Annual demand [MWh] | 655 | 515 | 480 | 451 |
Daily average peak demand [kW] | 215 | 169 | 173 | 173 |
Electricity | ||||
Annual demand [MWh] | 21 | 36 | 63 | 67 |
Hourly average peak demand [kW] | 4 | 6 | 18 | 18 |
Total annual demand [MWh] | 676 | 551 | 543 | 518 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gustafsson, M.S.; Myhren, J.A.; Dotzauer, E.; Gustafsson, M. Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios. Energies 2019, 12, 2719. https://doi.org/10.3390/en12142719
Gustafsson MS, Myhren JA, Dotzauer E, Gustafsson M. Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios. Energies. 2019; 12(14):2719. https://doi.org/10.3390/en12142719
Chicago/Turabian StyleGustafsson, Moa Swing, Jonn Are Myhren, Erik Dotzauer, and Marcus Gustafsson. 2019. "Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios" Energies 12, no. 14: 2719. https://doi.org/10.3390/en12142719
APA StyleGustafsson, M. S., Myhren, J. A., Dotzauer, E., & Gustafsson, M. (2019). Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios. Energies, 12(14), 2719. https://doi.org/10.3390/en12142719