Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications
Abstract
:1. Introduction
2. Related Work
- Studying the effect of power control in an uninstructed network where nodes communicating together in a random multi-hop fashion.
- Studying the adaptive transmission power control effect in the clustered network.
- Comparing the proposed method with some existing work in terms of network lifetime.
3. System Model
4. Performance Evaluation
4.1. Non-Clustered Network Performance Evaluation
4.2. Clustered Network Performance Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Antolín, D.; Medrano, N.; Calvo, B.; Pérez, F. A wearable wireless sensor network for indoor smart environment monitoring in safety applications. Sensors 2017, 17, 365. [Google Scholar] [CrossRef] [PubMed]
- Kurt, S.; Yildiz, H.U.; Yigit, M.; Tavli, B.; Gungor, V.C. Packet size optimization in wireless sensor networks for smart grid applications. IEEE Trans. Ind. Electron. 2017, 64, 2392–2401. [Google Scholar] [CrossRef]
- Park, P.; Di Marco, P.; Johansson, K.H. Cross-layer optimization for industrial control applications using wireless sensor and actuator mesh networks. IEEE Trans. Ind. Electron. 2017, 64, 3250–3259. [Google Scholar] [CrossRef]
- Spirjakin, D.; Baranov, A.; Akbari, S. Wearable Wireless Sensor System with RF Remote Activation for Gas Monitoring Applications. IEEE Sens. J. 2018, 18, 2976–2982. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.; Tharumalingam, E.; Dusseault, M.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Mekikis, P.V.; Kartsakli, E.; Antonopoulos, A.; Alonso Zárate, L.G.; Verikoukis, C. Connectivity analysis in clustered wireless sensor networks powered by solar energy. IEEE Trans. Wirel. Commun. 2018, 17, 2389–2401. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Allmen, L.; Bailleul, G.; Becker, T.; Decotignie, J.-D.; Kiziroglou, M.; Leroux, C.; Mitcheson, P.; Müller, J.; Piguet, D.; Toh, T. Aircraft strain WSN powered by heat storage harvesting. IEEE Trans. Ind. Electron. 2017, 64, 7284–7292. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Yang, Y.; Ye, F. Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks. IEEE Trans. Mob. Comput. 2018, 17, 560–576. [Google Scholar] [CrossRef]
- Lin, C.; Wu, Y.; Liu, Z.; Obaidat, M.S.; Yu, C.W.; Wu, G. GTCharge: A game theoretical collaborative charging scheme for wireless rechargeable sensor networks. J. Syst. Softw. 2016, 121, 88–104. [Google Scholar] [CrossRef]
- Lin, C.; Wu, G.; Obaidat, M.S.; Yu, C.W. Clustering and splitting charging algorithms for large scaled wireless rechargeable sensor networks. J. Syst. Softw. 2016, 113, 381–394. [Google Scholar] [CrossRef]
- Zhou, M.; Al-Furjan, M.S.H.; Zou, J.; Liu, W. A review on heat and mechanical energy harvesting from human–Principles, prototypes and perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3582–3609. [Google Scholar] [CrossRef]
- Anisi, M.H.; Abdul-Salaam, G.; Idris, M.Y.I.; Wahab, A.W.A.; Ahmedy, I. Energy harvesting and battery power based routing in wireless sensor networks. Wirel. Netw. 2017, 23, 249–266. [Google Scholar] [CrossRef]
- Zareei, M.; Vargas-Rosales, C.; Villalpando-Hernandez, R.; Azpilicueta, L.; Anisi, M.H.; Rehmani, M.H. The effects of an Adaptive and Distributed Transmission Power Control on the performance of energy harvesting sensor networks. Comput. Netw. 2018, 137, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Zareei, M.; Islam, A.M.; Vargas-Rosales, C.; Mansoor, N.; Goudarzi, S.; Rehmani, M.H. Mobility-aware medium access control protocols for wireless sensor networks: A survey. J. Netw. Comput. Appl. 2018, 104, 21–37. [Google Scholar] [CrossRef]
- Zeb, A.; Islam, A.M.; Zareei, M.; Al Mamoon, I.; Mansoor, N.; Baharun, S.; Katayama, Y.; Komaki, S. Clustering analysis in wireless sensor networks: The ambit of performance metrics and schemes taxonomy. Int. J. Distrib. Sens. Netw. 2016, 12, 4979142. [Google Scholar] [CrossRef]
- Zareei, M.; Islam, A.M.; Mansoor, N.; Baharun, S.; Mohamed, E.M.; Sampei, S. CMCS: A cross-layer mobility-aware MAC protocol for cognitive radio sensor networks. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 160. [Google Scholar] [CrossRef]
- Zareei, M.; Taghizadeh, A.; Budiarto, R.; Wan, T.-C. EMS-MAC: Energy efficient contention-based medium access control protocol for mobile sensor networks. Comput. J. 2011, 54, 1963–1972. [Google Scholar] [CrossRef]
- Mostafaei, H.; Montieri, A.; Persico, V.; Pescapé, A. A sleep scheduling approach based on learning automata for WSN partialcoverage. J. Netw. Comput. Appl. 2017, 80, 67–78. [Google Scholar] [CrossRef]
- Uddin, J.; Ghazali, R.; Deris, M.M. An empirical analysis of rough set categorical clustering techniques. PLoS ONE 2017, 12, e0164803. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Hamza, H.S.; Saroit, I.A. Coverage in mobile wireless sensor networks (M-WSN): A survey. Comput. Commun. 2017, 110, 133–150. [Google Scholar] [CrossRef]
- Khan, A.; Abdullah, A.; Anisi, M.; Bangash, J. A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors 2014, 14, 2510–2548. [Google Scholar] [CrossRef]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, X.; Dong, Y. An effective routing protocol for energy harvesting wireless sensor networks. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013; pp. 2080–2084. [Google Scholar]
- Voigt, T.; Dunkels, A.; Alonso, J.; Ritter, H.; Schiller, J. Solar-aware clustering in wireless sensor networks. In Proceedings of the ISCC 2004, Ninth International Symposium on Computers and Communications (IEEE Cat. No.04TH8769), Alexandria, Egypt, 28 June–1 July 2004; Volume 1, pp. 238–243. [Google Scholar]
- Wu, Y.; Liu, W. Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks. IET Wirel. Sens. Syst. 2013, 3, 112–118. [Google Scholar] [CrossRef]
- Wu, D.; He, J.; Wang, H.; Wang, C.; Wang, R. A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks. IEEE Commun. Mag. 2015, 53, 92–98. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, G.; Tan, H.-P. Clustering algorithms for maximizing the lifetime of wireless sensor networks with energy-harvesting sensors. Comput. Netw. 2013, 57, 2689–2704. [Google Scholar] [CrossRef]
- Alrajeh, N.A.; Khan, S.; Lloret, J.; Loo, J. Secure routing protocol using cross-layer design and energy harvesting in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2013, 9, 374796. [Google Scholar] [CrossRef]
- Peng, S.; Wang, T.; Low, C. Energy neutral clustering for energy harvesting wireless sensors networks. Ad Hoc Netw. 2015, 28, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Liu, D. DPSO-based clustering routing algorithm for energy harvesting wireless sensor networks. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Babayo, A.A.; Anisi, M.H.; Ali, I. A review on energy management schemes in energy harvesting wireless sensor networks. Renew. Sustain. Energy Rev. 2017, 76, 1176–1184. [Google Scholar] [CrossRef]
- Sharma, V.; Mukherji, U.; Joseph, V.; Gupta, S. Optimal energy management policies for energy harvesting sensor nodes. IEEE Trans. Wirel. Commun. 2010, 9, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.-S.; Sinha, P.; Koksal, C.E. Joint energy management and resource allocation in rechargeable sensor networks. In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [Google Scholar]
- Seyedi, A.; Sikdar, B. Energy efficient transmission strategies for body sensor networks with energy harvesting. IEEE Trans. Commun. 2010, 58, 2116–2126. [Google Scholar] [CrossRef]
- Medepally, B.; Mehta, N.B.; Murthy, C.R. Implications of energy profile and storage on energy harvesting sensor link performance. In Proceedings of the GLOBECOM 2009—2009 Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar]
- Koulali, M.-A.; Kobbane, A.; El Koutbi, M.; Tembine, H.; Ben-Othman, J. Dynamic power control for energy harvesting wireless multimedia sensor networks. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 158. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, F.; Quevedo, D.E.; Lau, V.; Dey, S.; Shi, L. Power control of an energy harvesting sensor for remote state estimation. IEEE Trans. Autom. Control 2017, 62, 277–290. [Google Scholar] [CrossRef]
- Amirnavaei, F.; Dong, M. Online power control optimization for wireless transmission with energy harvesting and storage. IEEE Trans. Wirel. Commun. 2016, 15, 4888–4901. [Google Scholar] [CrossRef]
- Li, C.; Ye, M.; Chen, G.; Wu, J. An energy-efficient unequal clustering mechanism for wireless sensor networks. In Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, Washington, DC, USA, 7 November 2005; pp. 8–604. [Google Scholar]
- Khan, A.U.R.; Madani, S.A.; Hayat, K.; Khan, S.U. Clustering-based power-controlled routing for mobile wireless sensor networks. Int. J. Commun. Syst. 2012, 25, 529–542. [Google Scholar] [CrossRef]
- Kwon, T.; Gerla, M. Clustering with power control. In Proceedings of the MILCOM 1999, IEEE Military Communications (Cat. No.99CH36341), Atlantic City, NJ, USA, 31 October–3 November 1999; pp. 1424–1428. [Google Scholar]
- Guo, S.-J.; Zheng, J.; Qu, Y.-G.; Zhao, B.-H.; Pan, Q.-K. Clustering and multi-hop routing with power control in wireless sensor networks. J. China Univ. Posts Telecommun. 2007, 14, 49–57. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Practice; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1996; Volume 2. [Google Scholar]
- NESSCAP Inc. Nesscap Ultracapacitor Products. Available online: www.nesscap.com (accessed on 27 April 2017).
- Younis, O.; Fahmy, S. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mob. Comput. 2004, 3, 366–379. [Google Scholar] [CrossRef]
- Heinzelman, W.B. Application-Specific Protocol Architectures for Wireless Networks. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2000. [Google Scholar]
Parameter | Value |
---|---|
Number of nodes | 100, 200 |
Network size | 1000 m × 1000 m |
Transmission range | Default = 100, Δ = 150, δ = 200 m |
Power parameters | A = 50%, β = 25%, θ = 10% |
Capacitor | 300 energy units |
Packet rate | 30 packets per round |
Energy harvesting rate | 6 units per round |
Consumption rate | 1,3,10 units per round depending on transmission power |
Noise Floor | 0, 10, 20, 30, 40 dB |
Simulation run | 50 rounds |
Confidence interval | 90% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zareei, M.; Vargas-Rosales, C.; Anisi, M.H.; Musavian, L.; Villalpando-Hernandez, R.; Goudarzi, S.; Mohamed, E.M. Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications. Energies 2019, 12, 2794. https://doi.org/10.3390/en12142794
Zareei M, Vargas-Rosales C, Anisi MH, Musavian L, Villalpando-Hernandez R, Goudarzi S, Mohamed EM. Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications. Energies. 2019; 12(14):2794. https://doi.org/10.3390/en12142794
Chicago/Turabian StyleZareei, Mahdi, Cesar Vargas-Rosales, Mohammad Hossein Anisi, Leila Musavian, Rafaela Villalpando-Hernandez, Shidrokh Goudarzi, and Ehab Mahmoud Mohamed. 2019. "Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications" Energies 12, no. 14: 2794. https://doi.org/10.3390/en12142794
APA StyleZareei, M., Vargas-Rosales, C., Anisi, M. H., Musavian, L., Villalpando-Hernandez, R., Goudarzi, S., & Mohamed, E. M. (2019). Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications. Energies, 12(14), 2794. https://doi.org/10.3390/en12142794