Axial Thrust, Disk Frictional Losses, and Heat Transfer in a Gas Turbine Disk Cavity
Abstract
:1. Introduction
2. Experimental Set-Ups
2.1. Designs of the Test Rigs
2.2. Experimental Conditions
2.3. Uncertainty Analysis
3. Results and Discussion
3.1. Radial Pressure Distribution
3.2. Axial Thrust Coefficient
3.3. Moment Coefficient
3.4. Local Heat Transfer Coefficient
3.5. Average Nusselt Number
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Latin Symbols | |||
Constants | |||
b | Effective outer radius of the disk | m | |
Axial thrust coefficient | |||
Moment coefficient | |||
Pressure coefficient | |||
Local flow rate coefficient | |||
Through-flow coefficient | |||
Axial thrust | N | ||
G | Non-Dimensional axial gap width | ||
Local heat transfer coefficient | |||
Average heat transfer coefficient | |||
Core swirl ratio | |||
Thermal conductivity | |||
Specific heat at constant pressure | |||
Frictional torque on a single surface | |||
Mass flow rate | |||
Local Nusselt number | |||
Average Nusselt number | |||
n | Speed of rotation | rpm | |
Pressure | Pa | ||
Non-Dimensional pressure | |||
Pressure at | Pa | ||
Volumetric through-flow rate | |||
Heat flux | |||
Re | Global circumferential Reynolds number | ||
Local circumferential Reynolds number | |||
Radial coordinate | m | ||
Inner radius where the measurements of start | m | ||
Recovery factor | |||
Radial clearance | m | ||
Radius of the horizontal pipe | m | ||
Axial gap of the front chamber | m | ||
Axial gap of the back chamber | m | ||
Axial width of the outlet | m | ||
Initial temperature on the disk surface | K | ||
Temperature in the main stream | K | ||
Temperature on the surface of the disk | K | ||
Adiabatic wall temperature | K | ||
Velocity of the mainstream at | |||
Time | s | ||
x | Non-Dimensional radial coordinate | ||
Greek Symbols | |||
Thermal diffusivity | |||
Ratio for the speed of moment coefficient | |||
Turbulent flow parameter | |||
Non-dimensional axial coordinate | |||
Dynamic viscosity | |||
Kinematic viscosity | |||
Density | |||
Change ratio of | |||
Change ratio of | |||
Change ratio of | |||
Density | |||
Angular velocity of the disk | |||
Angular velocity of the fluid | |||
Ratio for the speed of rotation | |||
Abbreviations | |||
CCD | Charge coupled device | ||
erfc | Complementary error function | ||
FS | Full scale | ||
HWA | Hot-Wire-Anemometry | ||
TLC | Thermochromic liquid crystal |
References
- Li, L. Research on the Mechanism of Flow and Heat Transfer in Rotor-Stator Cavities in Gas Turbine. Ph.D. Thesis, Tsinghua University, Beijing, China, April 2013. [Google Scholar]
- Owen, J.M.; Pincombe, J.R. Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid. J. Fluid Mech. 1980, 99, 111–127. [Google Scholar] [CrossRef]
- Owen, J.M. An Approximate Solution for the Flow between a Rotating and a Stationary Disc; Report; Thermo-Fluid Mechanics Research Centre, University of Sussex: Brighton, UK, 1987. [Google Scholar]
- Owen, J.M.; Rogers, R.H. Flow and Heat Transfer in Rotating-Disc Systems, Volume 1: Rotor-Stator Systems; Research Study Press: Taunton, UK, 1989. [Google Scholar]
- Poncet, S.; Chauve, M.P.; Le Gal, P. Turbulent rotating disk flow with inward through-flow. J. Fluid Mech. 2005, 522, 253–262. [Google Scholar] [CrossRef]
- Poncet, S.; Schiestel, R.; Chauve, M.P. Centrifugal flow in a rotor-stator cavity. J. Fluid Eng. 2005, 127, 787–794. [Google Scholar] [CrossRef]
- Will, B.C.; Benra, F.K. Investigation of the Fluid Flow in a Rotor-Stator Cavity with Inward Through-Flow. In Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, CO, USA, 2–6 August 2009. [Google Scholar]
- Will, B.C.; Benra, F.K.; Dohmen, H.J. Numerical and Experimental Investigation of the Flow in the Side Cavities of a Centrifugal Pump. In Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 17–22 February 2010. [Google Scholar]
- Hu, B.; Brillert, D.; Dohmen, H.J.; Benra, F.K. Investigation on the Flow in a Rotor-Stator Cavity with Centripetal Through-Flow. Int. J. Turbomach. Propuls. Power 2017, 2, 18. [Google Scholar] [CrossRef]
- Hu, B.; Brillert, D.; Dohmen, H.J.; Benra, F.-K. Investigation on thrust and moment coefficients of a centrifugal turbomachine. Int. J. Turbomach. Propuls. Power 2018, 3, 9. [Google Scholar] [CrossRef]
- Debuchy, R.; Abdel Nour, F.; Bois, G. On the flow behavior in rotor-stator system with superimposed flow. Int. J. Rotating Mach. 2008. [Google Scholar] [CrossRef]
- Kurokawa, J.; Toyokura, T. Study on Axial Thrust of Radial Flow Turbomachinery. In Proceedings of the Second International JSME Symposium Fluid Machinery and Fluidics, Tokyo, Japan, 4–9 September 1972. [Google Scholar]
- Kurokawa, J.; Toyokura, T. Axial Thrust, Disc Friction Torque and Leakage Loss of Radial Flow Turbomachinery. In Proceedings of the International Conference on Pump and Turbine Design and Development, Glasgow, UK, 1–3 September 1976. [Google Scholar]
- Wang, C.; Shi, W.; Wang, X.; Jiang, X.; Yang, Y.; Li, W.; Zhou, L. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Appl. Energy 2017, 187, 10–26. [Google Scholar] [CrossRef]
- Metzger, D.E.; Bunker, R.S.; Bosch, G. Transient liquid crystal measurement of local heat transfer on a rotating disk with jet impingement. J. Turbomach. 1991, 113, 52–59. [Google Scholar] [CrossRef]
- Metzger, D.E.; Larson, D.E. Use of melting point surface coatings for local convection heat transfer measurements in rectangular channel flows with 90-deg turns. Trans. ASMEJ Heat Transf. 1986, 108, 48–54. [Google Scholar] [CrossRef]
- Taler, J.; Duda, P. Solving Direct and Inverse Heat Conduction Problems; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Taler, J.; Taler, D. Measurement of heat flux and heat transfer coefficient. In Heat Flux Processes, Measurement Techniques and Applications; Cirimele, G., D’Elia, M., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 1–103. [Google Scholar]
- Bunker, R.S.; Metzger, D.E.; Wittig, S. Local heat transfer in turbine disk cavities. Part I: Rotor and stator cooling with hub injection of coolant. J. Turbomach. 1992, 114, 211–220. [Google Scholar] [CrossRef]
- Bunker, R.S.; Metzger, D.E.; Wittig, S. Local heat transfer in turbine disk cavities. Part II: Rotor cooling with radial injection of coolant. J. Turbomach. 1992, 114, 221–228. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, X.; Wang, L.; Wu, H.; Xu, G. Flow structure and heat transfer characteristics in rotor-stator cavity with inlet at low radius. Appl. Therm. Eng. 2014, 70, 291–306. [Google Scholar] [CrossRef]
- Poncet, S.; Schiestel, R. Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow. J. Heat Mass Transf. 2007, 50, 1528–1544. [Google Scholar] [CrossRef]
- Tuliszka-Sznitko, E.; Zieliński, A.; Majchrowski, W. LES and DNS of the non-isothermal transitional flow in rotating cavity. Int. J. Heat Fluid Flow 2009, 30, 534–548. [Google Scholar] [CrossRef]
- Majchrowski, W.; Kie1czewski, K.; Tuliszka-Sznitko, E. Heat transfer in rotor/stator cavity. J. Phys. Conf. Ser. 2011, 318, 32022–32031. [Google Scholar]
- Liao, G.; Wang, X.; Li, J.; Zhou, J. Numerical investigation on the flow and heat transfer in a rotor-stator disc cavity. Appl. Therm. Eng. 2015, 87, 10–23. [Google Scholar] [CrossRef]
- Engineering ToolBox. Air - Thermophysical Properties. 2003. Available online: https://www.engineeringtoolbox.com/air-properties-d_156.html (accessed on 4 May 2019).
- Schlichting, H. Boundary-Layer Theory; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Aus der Wiesche, S. Heat Transfer in Rotating Flows. In Handbook of Thermal Science and Engineering; Kulacki, F., Ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
(m) | (m) | (m) | (m) | (m) | (m) | (m) | |
---|---|---|---|---|---|---|---|
SRSCA | 0.11 | 0.05 | 0.011 | 0.008 | 0.002 | 0.002 | 500–2500 |
SRSCB | 0.25 | 0.07 | 0.025 | − | − | 0.002 | 500–2500 |
20% | 30% | 50% | 70% | 80% | 90% | 100% | |
0 | 1262 | 2525 | 3787 | 5050 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Li, X.; Fu, Y.; Gu, C.; Ren, X.; Lu, J. Axial Thrust, Disk Frictional Losses, and Heat Transfer in a Gas Turbine Disk Cavity. Energies 2019, 12, 2917. https://doi.org/10.3390/en12152917
Hu B, Li X, Fu Y, Gu C, Ren X, Lu J. Axial Thrust, Disk Frictional Losses, and Heat Transfer in a Gas Turbine Disk Cavity. Energies. 2019; 12(15):2917. https://doi.org/10.3390/en12152917
Chicago/Turabian StyleHu, Bo, Xuesong Li, Yanxia Fu, Chunwei Gu, Xiaodong Ren, and Jiaxing Lu. 2019. "Axial Thrust, Disk Frictional Losses, and Heat Transfer in a Gas Turbine Disk Cavity" Energies 12, no. 15: 2917. https://doi.org/10.3390/en12152917
APA StyleHu, B., Li, X., Fu, Y., Gu, C., Ren, X., & Lu, J. (2019). Axial Thrust, Disk Frictional Losses, and Heat Transfer in a Gas Turbine Disk Cavity. Energies, 12(15), 2917. https://doi.org/10.3390/en12152917