Flow Regime Analysis of the Pressure Build-Up during CO2 Injection in Saturated Porous Rock Formations
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. The Self-Similar Dynamics of the Plume Evolution
2.2. Pressure Analysis in the Flow Regimes of Plume Evolution
3. Numerical Modeling
4. Results and Discussion
4.1. Comparison of Computational Results with the Solution of the Self-Similar Equation for the Interface
4.2. Comparison of Computational Results with the Solution of the Self-Similar Equation for the Pressure
4.3. Pressure Build-Up Analysis for Cap Integrity Considerations
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Association. Climate Change; IEA: Paris, France, 2015. [Google Scholar]
- European Commission. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No. 1013/2006. Off. J. EU 2009, 5, 114–145. [Google Scholar]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. (Eds.) IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Papanastasiou, P.; Papamichos, E.; Atkinson, C. On the risk of hydraulic fracturing in CO2 geological storage. Int. J. Numer. Anal. Method. Geomech. 2016, 40, 1472–1484. [Google Scholar] [CrossRef]
- Blunt, M.; Fayers, F.J.; Orr, F.M., Jr. Carbon dioxide in enhanced oil recovery. Energy Convers. Manag. 1993, 34, 1197–1204. [Google Scholar] [CrossRef]
- Adu, E.; Zhang, Y.; Liu, D. Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry. Can. J. Chem. Eng. 2019, 97, 1048–1076. [Google Scholar] [CrossRef]
- Ravagnani, A.G.; Ligero, E.L.; Suslick, S.B. CO2 sequestration through enhanced oil recovery in a mature oil field. J. Pet. Sci. Eng. 2009, 65, 129–138. [Google Scholar] [CrossRef]
- Sarris, E.; Gravanis, E.; Papanastasiou, P. Investigation of self-similar interface evolution in carbon dioxide sequestration in saline aquifers. Transp. Porous Media 2014, 103, 341–359. [Google Scholar]
- Guo, B.; Zheng, Z.; Bandilla, K.W.; Celia, M.A.; Stone, H.A. Flow regime analysis for geologic CO2 sequestration and other subsurface fluid injections. Int. J. Greenh. Gas Control. 2016, 53, 284–291. [Google Scholar] [CrossRef]
- Ouellet, A.; Bérard, T.; Desroches, J.; Frykman, P.; Welsh, P.; Minton, J.; Pamukcu, Y.; Hurter, S.; Schmidt-Hattenberger, C. Reservoir geomechanics for assessing containment in CO2 storage: a case study at Ketzin, Germany. Energy Procedia 2011, 4, 3298–3305. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rezaee, R.; Rasouli, V.; Rabiei, M. Significant aspects of carbon capture and storage–A review. Petroleum 2018. [Google Scholar] [CrossRef]
- Mathias, S.A.; Hardisty, P.E.; Trudell, M.R.; Zimmerman, R.W. Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media 2009, 79, 265–284. [Google Scholar] [CrossRef]
- Jenkins, L.T.; Foschi, M.; MacMinn, C.W. Impact of pressure dissipation on fluid injection into layered aquifers. arXiv 2019, arXiv:1901.03623. [Google Scholar]
- Gheibi, S.; Vilarrasa, V.; Holt, R.M. Numerical analysis of mixed-mode rupture propagation of faults in reservoir-caprock system in CO2 storage. Int. J. Greenh. Gas Control. 2018, 71, 46–61. [Google Scholar] [CrossRef]
- Shukla, R.; Ranjith, P.; Haque, A.; Choi, X. A review of studies on CO2 sequestration and caprock integrity. Fuel 2010, 89, 2651–2664. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Olivella, S.; Carrera, J.; Rutqvist, J. Long term impacts of cold CO2 injection on the caprock integrity. Int. J. Greenh. Gas Control. 2014, 24, 1–13. [Google Scholar] [CrossRef]
- Hui, D.; Pan, Y.; Luo, P.; Zhang, Y.; Sun, L.; Lin, C. Effect of supercritical CO2 exposure on the high-pressure CO2 adsorption performance of shales. Fuel 2019, 247, 57–66. [Google Scholar] [CrossRef]
- Hinton, E.M.; Woods, A.W. Buoyancy-driven flow in a confined aquifer with a vertical gradient of permeability. J. Fluid Mech. 2018, 848, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.E.; Zheng, Z.; Stone, H.A. Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge. Phys. Rev. Fluids 2017, 2, 074101. [Google Scholar] [CrossRef]
- Debbabi, Y.; Jackson, M.D.; Hampson, G.J.; Salinas, P. Impact of the Buoyancy–Viscous Force Balance on Two-Phase Flow in Layered Porous Media. Trans. Porous Media 2018, 124, 263–287. [Google Scholar] [CrossRef]
- Guo, B.; Zheng, Z.; Celia, M.A.; Stone, H.A. Axisymmetric flows from fluid injection into a confined porous medium. Phys. Fluids 2016, 28, 1–22. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A.; Bachu, S. Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Trans. Porous Media 2005, 58, 339–360. [Google Scholar] [CrossRef]
- Dentz, M.; Tartakovsky, D.M. Abrupt-interface solution for carbon dioxide injection into porous media. Trans. Porous Media 2009, 79, 15–27. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.E.; Yu, B. Sharp front capturing method for carbon dioxide plume propagation during injection into a deep confined aquifer. Energy Fuels 2010, 24, 1431–1440. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Bolster, D.; Olivella, S.; Carrera, J. Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers. Int. J. Greenh. Gas Control 2010, 4, 910–919. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Olivella, S.; Carrera, J. Geomechanical stability of the caprock during CO2 sequestration in deep saline aquifers. Energy Procedia 2011, 4, 5306–5313. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Silva, O.; Carrera, J.; Olivella, S. Liquid CO2 injection for geological storage in deep saline aquifers. Int. J. Greenh. Gas Control 2013, 14, 84–96. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Carrera, J.; Olivella, S. Hydromechanical characterization of CO2 injection sites. Int. J. Greenh. Gas Control 2013, 19, 665–677. [Google Scholar] [CrossRef]
- Li, C.; Barès, P.; Laloui, L. A hydromechanical approach to assess CO2 injection-induced surface uplift and caprock deflection. Geomech. Energy Environ. 2015, 4, 51–60. [Google Scholar] [CrossRef]
- Vilarrasa, V.; Carrera, J.; Bolster, D.; Dentz, M. Semi-analytical Solution for CO2 Plume Shape and Pressure Evolution During CO2 Injection in Deep Saline Formations. Trans. Porous Media 2013, 97, 43–65. [Google Scholar] [CrossRef]
- ANSYS. ANSYS-Fluent User Manual, version 14; Ansys Inc.: Canonsburg, PA, USA, 2014. [Google Scholar]
- Nordbotten, J.M.; Celia, M.A. Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 2006, 561, 307–327. [Google Scholar] [CrossRef]
- Mathias, S.A.; Hardisty, P.E.; Trudell, M.R.; Zimmerman, R.W. Screening and selection of sites for CO2 sequestration based on pressure buildup. Int. J. Greenh. Gas Control 2009, 3, 577–585. [Google Scholar] [CrossRef]
- PCOR. Potential CO2 Storage Capacity of the Saline Portions of the Lower Cretaceous Aquifer System in the PCOR Partnership Region; Energy & Environmental Research Center (EERC): Grand Forks, ND, USA, 2005. [Google Scholar]
- PCOR. Sequestration Potential of the Madison of the Northern Great Plains Aquifer System (Madison Geological Sequestration Unit); Energy & Environmental Research Center (EERC): Grand Forks, ND, USA, 2005. [Google Scholar]
- Houseworth, J.E. Matched boundary extrapolation solutions for CO2 well-injection into a saline aquifer. Trans. Porous Media 2012, 91, 813–831. [Google Scholar] [CrossRef]
- Yortsos, Y.C. A theoretical analysis of vertical flow equilibrium. Trans. Porous Media 1995, 18, 107–129. [Google Scholar] [CrossRef]
- Golding, M.J.; Huppert, H.E.; Neufeld, J.A. The effects of capillary forces on the axisymmetric propagation of two-phase, constant-flux gravity currents in porous media. Phys. Fluids 2013, 25, 1–18. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Dahle, H.K. Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Zhao, B.; MacMinn, C.W.; Szulczewski, M.L.; Neufeld, J.A.; Huppert, H.E.; Juanes, R. Interface pinning of immiscible gravity-exchange flows in porous media. Phys. Rev. E 2013, 87, 1–7. [Google Scholar] [CrossRef]
- MacMinn, C.W.; Juanes, R. A mathematical model of the footprint of the CO2 plume during and after injection in deep saline aquifer systems. Energy Procedia 2009, 1, 3429–3436. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Courier Corporation: New York, NY, USA, 2006. [Google Scholar]
- Zheng, Z.; Guo, B.; Christov, I.; Celia, M.A.; Stone, H.A. Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 2015, 767, 881–909. [Google Scholar] [CrossRef]
Variable | Value | |
---|---|---|
Geometric properties | ||
Aquifer thickness, H (m) | 30 | |
Wellbore radius, rw (m) | 0.15 | |
Wellbore face area, A (m2) | 28.35 | |
Porous formation properties | ||
Rock permeability, K (m2) | 2 × 10−14 | |
Porosity, φ (-) | 0.15 | |
Fluids properties | ||
Water density, ρw (kg/m3) | 1045 | |
Water viscosity, μw (kg/s·m) | 2.54 × 10−4 | |
CO2 density, ρc (kg/m3) | 479 | |
CO2 viscosity, μc (kg/s·m) | 4.23 × 10−5 | 1.69 × 10−5 |
Mobility ratio, λ (-) | 6 | 15 |
Pumping parameters | ||
Superficial velocity, u (m/s) | 4.36 × 10−4 | 5.81 × 10−6 |
Injection flow rate, Q (m3/s) | 1.24 × 10−2 | 1.65 × 10−4 |
Buoyancy parameter, Γ (-) | 0.2 | 15 |
Madison group | |||
Variables | Madison A | Madison B | Madison C |
Γ | 6.6 | 0.64 | 4.8 |
λ | 11.7 | 30.4 | 15.4 |
Regime | V | III | V |
Pself-similar equation (MPa) | 1.21 | 2.81 | 0.94 |
Panalytical (MPa) | - | 1.31 | - |
PMathias et al. 2009 (MPa) | 1.46 | 3.74 | 1.47 |
Cretaceous group | |||
Variables | Cretaceous A | Cretaceous B | Cretaceous C |
Γ | 15.1 | 79.6 | 51.3 |
λ | 20.8 | 26.0 | 13.5 |
Regime | V | IV+ | IV+ |
Pself-similar equation (MPa) | 1.38 | 0.46 | 0.93 |
Panalytical (MPa) | - | 0.45 | 0.925 |
PMathias et al. 2009 (MPa) | 1.21 | 0.25 | 0.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarris, E.; Gravanis, E. Flow Regime Analysis of the Pressure Build-Up during CO2 Injection in Saturated Porous Rock Formations. Energies 2019, 12, 2972. https://doi.org/10.3390/en12152972
Sarris E, Gravanis E. Flow Regime Analysis of the Pressure Build-Up during CO2 Injection in Saturated Porous Rock Formations. Energies. 2019; 12(15):2972. https://doi.org/10.3390/en12152972
Chicago/Turabian StyleSarris, Ernestos, and Elias Gravanis. 2019. "Flow Regime Analysis of the Pressure Build-Up during CO2 Injection in Saturated Porous Rock Formations" Energies 12, no. 15: 2972. https://doi.org/10.3390/en12152972
APA StyleSarris, E., & Gravanis, E. (2019). Flow Regime Analysis of the Pressure Build-Up during CO2 Injection in Saturated Porous Rock Formations. Energies, 12(15), 2972. https://doi.org/10.3390/en12152972