Distributed Ledger Technologies for Peer-to-Peer Local Markets in Distribution Networks
Abstract
:1. Introduction
2. Decentralized Market Frameworks for Flexibility Services in Distribution Systems
2.1. From Centralized towards Decentralized P2P as Market Frameworks
2.2. The CDA Market Framework
2.3. Decentralized Market Clearing Process
2.4. Case Study: Power System and Scenarios
- each generator g places an offer shout with a probability of one half, where is the energy which should be reserved and is its price. is randomly generated from a normal distribution with average value and standard deviation . is the expected active power production from the generator g, is the time interval covered by the market session, and is a parameter which sets the width of the random distribution [37,38]. is also randomly generated from a normal distribution, with mean value €/kWh and standard deviation €/kWh. These prices approximately reproduce the reserve formation prices in the Spanish ancillary service market [39].
- each load places a bid by following the same pattern and parameters of the generators.
2.5. Case Study: Computational Complexity of P2P Transactions
3. Results
3.1. Technical Validation of the Double Auction Model
3.2. Economical Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
AI | Artificial Intelligence |
AS | Ancillary Service |
AS+ | Upward Service for Ancillary Service |
AS- | Downward Service for Ancillary Service |
BaaS | Blockchain as a Service |
BRP | Balancing Responsible Party |
CDA | Continuous Double Auction |
DER | Distributed Energy Resource |
DL | Distributed Ledger |
DVM | Distributed Virtual Machine |
ICT | Information and Communications Technology |
IoT | Internet of Things |
LEC | Local Energy Communities |
LV | Low Voltage |
MG | Microgrid |
MV | Medium Voltage |
NCDA | Network-based Continuous Double Auction |
OCDA | Optimal Continuous Double Auction |
OPF | Optimal Power Flow |
P2P | Peer to Peer |
RES | Renewable Energy Source |
SC | Smart Contract |
SO | System Operator |
TSO | Transmission System Operator |
VDMA | Virtual Decentralized Market Authority |
References
- Pilo, F.; Celli, G.; Ghiani, E.; Soma, G.G. New electricity distribution network planning approaches for integrating renewable. Wiley Interdiscip. Rev. Energy Environ. 2013, 2, 140–157. [Google Scholar] [CrossRef]
- CEN-CENELEC-ETSI Smart Grid Coordination Group. Smart Grid Reference Architecture; CEN-CENELEC-ETSI: Brussels, Belgium, 2012. [Google Scholar]
- Dupont, C.; Oberthur, S. Decarbonization in the European Union: Internal Policies and External Strategies; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Siano, P.; de Marco, G.; Rolan, A.; Loia, V. A Survey and Evaluation of the Potentials of Distributed Ledger Technology for Peer-to-Peer Transactive Energy Exchanges in Local Energy Markets. IEEE Syst. J. 2019, 1–13. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P. A Survey on Microgrid Energy Management Considering Flexible Energy Sources. Energies 2019, 12, 2156. [Google Scholar] [CrossRef]
- Kazmi, S.A.A.; Shahzad, M.K.; Khan, A.Z.; Shin, D.R. Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies 2017, 10, 501. [Google Scholar] [CrossRef]
- Wolfe, P. The implications of an increasingly decentralised energy system. Energy Policy 2008, 36, 4509–4513. [Google Scholar] [CrossRef]
- Walker, G.; Devine-Wright, P. Community renewable energy: What should it mean? Energy Policy 2008, 36, 497–500. [Google Scholar] [CrossRef]
- Hatziargyriou, N. Microgrids: Architectures and Control; Wiley (IEEE Press): Hoboken, NJ, USA, 2014. [Google Scholar]
- Van der Schoor, T.; Scholtens, B. Power to the people: Local community initiatives and the transition to sustainable energy. Renew. Sustain. Energy Rev. 2015, 43, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhang, K.; Li, H.; Coelho, E.A.A.; Guerrero, J.M. MAS-Based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters: A Comprehensive Overview. IEEE Trans. Power Electron. 2018, 33, 6488–6508. [Google Scholar] [CrossRef]
- De Zotti, G.; Pourmousavi, S.A.; Madsen, H.; Poulsen, N.K. Ancillary Services 4.0: A Top-To-Bottom Control-Based Approach for Solving Ancillary Services Problems in Smart Grids. IEEE Access 2018, 6, 11694–11706. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Jogunola, O.; Ikpehai, A.; Anoh, K.; Adebisi, B.; Hammoudeh, M.; Gacanin, H.; Harris, G. Comparative Analysis of P2P Architectures for Energy Trading and Sharing. Energies 2017, 11, 62. [Google Scholar] [CrossRef]
- Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Engels, J.; Almasalma, H.; Deconinck, G. A distributed gossip-based voltage control algorithm for peer-to-peer microgrids. In Proceedings of the 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, NSW, Australia, 6–9 November 2016; pp. 370–375. [Google Scholar]
- Abdella, J.; Shuaib, K. Peer to peer distributed energy trading in smart grids: A survey. Energies 2018, 11, 1560. [Google Scholar] [CrossRef]
- Jogunola, O.; Ikpehai, A.; Anoh, K.; Adebisi, B.; Hammoudeh, M.; Son, S.-Y.; Harris, G. State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System. Energies 2017, 10, 2106. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008, pp. 1–9. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 21 August 2019).
- Buterin, V. A Next Generation Smart Contract & Decentralized Application Platform. 2014, pp. 1–36. Available online: https://github.com/ethereum/wiki/wiki/White-Paper (accessed on 24 June 2019).
- Dick, C.; Praktiknjo, A.; Dick, C.I.; Praktiknjo, A. Blockchain Technology and Electricity Wholesale Markets: Expert Insights on Potentials and Challenges for OTC Trading in Europe. Energies 2019, 12, 832. [Google Scholar] [CrossRef]
- Noor, S.; Yang, W.; Guo, M.; van Dam, K.H.; Wang, X. Energy Demand Side Management within micro-grid networks enhanced by blockchain. Appl. Energy 2018, 228, 1385–1398. [Google Scholar] [CrossRef]
- Diestelmeier, L. Changing power: Shifting the role of electricity consumers with blockchain technology—Policy implications for EU electricity law. Energy Policy 2019, 128, 189–196. [Google Scholar] [CrossRef]
- Hwang, J.; Hwang, J.; Choi, M.-I.; Lee, T.; Jeon, S.; Kim, S.; Park, S.; Park, S. Energy Prosumer Business Model Using Blockchain System to Ensure Transparency and Safety. Energy Procedia 2017, 141, 194–198. [Google Scholar] [CrossRef]
- Ahl, A.; Yarime, M.; Tanaka, K.; Sagawa, D. Review of blockchain-based distributed energy: Implications for institutional development. Renew. Sustain. Energy Rev. 2019, 107, 200–211. [Google Scholar] [CrossRef]
- Zizzo, G.; Sanseverino, E.R.; Ippolito, M.G.; di Silvestre, M.L.; Gallo, P. A Technical Approach to P2P Energy Transactions in Microgrids. IEEE Trans. Ind. Inform. 2018, 14.11, 3203. [Google Scholar]
- Pop, C.; Cioara, T.; Antal, M.; Anghel, I.; Salomie, I.; Bertoncini, M. Blockchain based decentralized management of demand response programs in smart energy grids. Sensors 2018, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Galici, M.; Ghiani, E.; Pilo, F.; Ruggeri, S.; Troncia, M. Blockchain local markets for the distributed control of microgrids. In Proceedings of the 25th International Conference on Electricity Distribution, Madrid, Spain, 3–6 June 2019; pp. 3–6. [Google Scholar]
- Vytelingum, P.; Cliff, D.; Jennings, N.R. Strategic bidding in continuous double auctions. Artif. Intell. 2008, 172, 1700–1729. [Google Scholar] [CrossRef] [Green Version]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Cigré Working Group C6.04. Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources; Cigré: Paris, France, 2014. [Google Scholar]
- European Parliament and Council. Directive 2009/72/ec of the European Parliament and of the Council of 13 July 2009 Concerning Common Rules for the Internal Market in Electricity and Repealing Directive 2003/54/ec; European Union: Brussels, Belgium, 2019 13 July. [Google Scholar]
- Dekker, G.W.; Frunt, J.; de Boer, W.W.; Duvoort, M.R. Case studies and results of the E-Price approach in power systems. In Proceedings of the 2013 10th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 27–31 May 2013; pp. 1–8. [Google Scholar]
- Kirschen, D.S.; Strbac, G. Fundamentals of Power System Economics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- European Commission. Final Report of the Sector Inquiry on Capacity Mechanisms; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Wang, J.; Wang, Q.; Zhou, N.; Chi, Y. A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction. Energies 2017, 10, 1971. [Google Scholar] [CrossRef]
- Wallace, C.S. Fast pseudorandom generators for normal and exponential variates. ACM Trans. Math. Softw. 1996, 22, 119–127. [Google Scholar] [CrossRef]
- Mureddu, M.; Facchini, A.; Damiano, A. A Statistical Approach for Modeling the Aging Effects in Li-Ion Energy Storage Systems. IEEE Access 2018, 6, 42196–42206. [Google Scholar] [CrossRef]
- RED Eléctrica de España. Monthly Bulletin April 2019—Relevant Information on the Operation of the Electrical System; RED Eléctrica de España: Madrid, Spain, 2019. [Google Scholar]
- Thurner, L.; Scheidler, A.; Schäfer, F.; Menke, J.-H.; Dollichon, J.; Meier, F.; Meinecke, S.; Braun, M. Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Trans. Power Syst. 2018, 33, 6510–6521. [Google Scholar] [CrossRef]
Bus | Lable | Active Power [MW] | Reactive Power [MVAr] |
---|---|---|---|
1 | load | 0.5194 | 0.1054 |
1 | load | 0.4845 | 0.159 |
3 | load | 0.27645 | 0.0692 |
3 | load | 0.2252 | 0.139 |
4 | generator | 6 | 0 |
4 | load | 0.43 | 0.108 |
5 | load | 0.7275 | 0.1823 |
6 | generator | 0.04 | 0 |
6 | load | 0.548 | 0.137 |
7 | generator | 1.5 | 0 |
7 | load | 0.0765 | 0.047 |
8 | load | 0.586 | 0.147 |
9 | load | 0.5737 | 0.355 |
10 | generator | 0.04 | 0 |
10 | load | 0.47 | 0.119 |
10 | load | 0.068 | 0.042 |
11 | load | 0.3298 | 0.083 |
12 | load | 1.499 | 0.3 |
12 | load | 0.5016 | 0.165 |
13 | load | 0.034 | 0.021 |
14 | generator | 0.03 | 0 |
14 | load | 1.178 | 0.295 |
14 | load | 0.33 | 0.205 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troncia, M.; Galici, M.; Mureddu, M.; Ghiani, E.; Pilo, F. Distributed Ledger Technologies for Peer-to-Peer Local Markets in Distribution Networks. Energies 2019, 12, 3249. https://doi.org/10.3390/en12173249
Troncia M, Galici M, Mureddu M, Ghiani E, Pilo F. Distributed Ledger Technologies for Peer-to-Peer Local Markets in Distribution Networks. Energies. 2019; 12(17):3249. https://doi.org/10.3390/en12173249
Chicago/Turabian StyleTroncia, Matteo, Marco Galici, Mario Mureddu, Emilio Ghiani, and Fabrizio Pilo. 2019. "Distributed Ledger Technologies for Peer-to-Peer Local Markets in Distribution Networks" Energies 12, no. 17: 3249. https://doi.org/10.3390/en12173249
APA StyleTroncia, M., Galici, M., Mureddu, M., Ghiani, E., & Pilo, F. (2019). Distributed Ledger Technologies for Peer-to-Peer Local Markets in Distribution Networks. Energies, 12(17), 3249. https://doi.org/10.3390/en12173249