Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO2/R161 Mixture Based on Natural Draft Dry Cooling Towers
Abstract
:1. Introduction
2. Model and Considerations
2.1. Calculation Assumptions
2.2. Mathematical Model
3. Results and Discussion
3.1. Thermodynamic Analysis
3.2. Design Parameters and Performance Analysis of Cooling Tower
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
h | enthalpy (kJ/kg) |
Q | heat transfer rate (kW) |
m | mass flow rate (kg/s) |
U | heat transfer coefficient (W·m−2·K−1) |
cp | specific heat capacity (kJ/kg·K) |
T | temperature (K) |
A | heat exchanger area (m2) |
D | inner diameter (m) |
K | coefficient of loss of air |
H | height (m) |
L | length (m) |
Greek symbols | |
temperature difference (K) | |
density (kg/m3) | |
Acronyms | |
ORC | organic Rankine cycle |
TRC | transcritical Rankine cycle |
LMTD | logarithmic mean temperature difference |
NDDCT | natural draft dry cooling tower |
Subscripts | |
p | pump |
t | turbine |
cool | cool water |
a | air |
i | inlet |
o | outlet |
Appendix A
References
- Vélez, F.; Segovia, J.J.; Martín, M.C.; Antolín, G.; Chejne, F.; Quijano, A. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew. Sustain. Energy Rev. 2012, 16, 4175–4189. [Google Scholar]
- Yamamoto, T.; Furuhata, T.; Arai, N.; Mori, K. Design and testing of the Organic Rankine Cycle. Energy 2001, 26, 239–251. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Zhang, C.; Xu, X.; Li, Q. Thermo-economic evaluations of dual pressure organic Rankine cycle (DPORC) driven by geothermal heat source. J. Renew. Sustain. Energy 2018, 10, 063901. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, C.; Zhang, C.; Xu, X.; Li, Q.; Mao, L. Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid. Energy 2018, 145, 52–64. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Xu, X.; Li, Q.; Wang, S.; Chen, X. Effects of superheat and internal heat exchanger on thermo-economic performance of organic Rankine cycle based on fluid type and heat sources. Energy 2018, 159, 482–495. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.; He, C.; Xu, X.; Wu, S.; Li, Y. Performance analysis and working fluid selection of a supercritical Organic Rankine Cycle for low grade waste heat recovery. Energies 2012, 5, 3233–3247. [Google Scholar] [CrossRef]
- Marston, C.H. Parametric analysis of the Kalina cycle. J. Eng. Gas Turb. Power 1990, 112, 107–116. [Google Scholar] [CrossRef]
- Gao, H.; Chen, F. Thermo-economic analysis of a bottoming Kalina cycle for internal combustion engine exhaust heat recovery. Energies 2018, 11, 3044. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Xu, X.; Li, Q.; Wang, S. Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles. Energy 2019, 168, 332–345. [Google Scholar] [CrossRef]
- Sadreddini, A.; Ashjari, M.A.; Fani, M.; Mohammadi, A. Thermodynamic analysis of a new cascade ORC and transcritical CO2 cycle to recover energy from medium temperature heat source and liquefied natural gas. Energy Convers. Manag. 2018, 167, 9–20. [Google Scholar] [CrossRef]
- Rony, R.U.; Yang, H.; Krishnan, S.; Song, J. Recent advances in transcritical CO2 (R744) heat pump system: A review. Energies 2019, 12, 457. [Google Scholar] [CrossRef]
- Omar, A.; Saghafifar, M.; Mohammadi, K.; Alashkar, A.; Gadalla, M. A review of unconventional bottoming cycles for waste heat recovery: Part II—Applications. Energy Convers. Manag. 2019, 180, 559–583. [Google Scholar] [CrossRef]
- Yari, M.; Mahmoudi, S.M.S. Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO2) cascade refrigeration cycles (Novel transcritical CO2 cycle). Energy 2011, 36, 6839–6850. [Google Scholar] [CrossRef]
- Xia, J.; Wang, J.; Zhang, G.; Lou, J.; Zhao, P.; Dai, Y. Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids. Appl. Therm. Eng. 2018, 144, 31–44. [Google Scholar] [CrossRef]
- Guo, J.; Li, M.; Xu, J.; Yan, J.; Wang, K. Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems. Energy 2019, 173, 785–798. [Google Scholar] [CrossRef]
- Manzolini, G.; Binotti, M.; Bonalumi, D.; Invernizzi, C.; Iora, P. CO2 mixtures as innovative working fluid in power cycles applied to solar plants. Techno-economic assessment. Sol. Energy 2019, 181, 530–544. [Google Scholar] [CrossRef]
- Baik, W.; Lee, W.; Yun, R. Heat transfer and pressure drop characteristics of CO2 mixtures in a pipeline under the seawater condition. Int. J. Heat Mass Transf. 2019, 136, 627–634. [Google Scholar] [CrossRef]
- Dai, B.; Li, M.; Ma, Y. Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery. Energy 2014, 64, 942–952. [Google Scholar] [CrossRef]
- Yang, M.H. The performance analysis of the transcritical Rankine cycle using carbon dioxide mixtures as the working fluids for waste heat recovery. Energy Convers. Manag. 2017, 151, 86–97. [Google Scholar] [CrossRef]
- Shu, G.; Yu, Z.; Tian, H.; Liu, P.; Xu, Z. Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for engine’s waste heat recovery. Energy Convers. Manag. 2018, 174, 668–685. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, C.; Xu, X.; Li, Q.; Wang, X.; Wang, S.; Chen, X. Comparative carbon and water footprint analysis and optimization of Organic Rankine Cycle. Appl. Therm. Eng. 2019, 158, 113769. [Google Scholar] [CrossRef]
- Li, X.; Duniam, S.; Gurgenci, H.; Guan, Z.; Veeraragavan, A. Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant. Appl. Energy 2017, 193, 15–27. [Google Scholar] [CrossRef]
- Hu, J.; Liu, C.; Li, Q.; Shi, X. Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid. Int. J. Heat Mass Transf. 2018, 125, 1345–1348. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Li, Q.; Wang, X.; Xu, X. Dynamic analysis and control strategies of Organic Rankine Cycle system for waste heat recovery using zeotropic mixture as working fluid. Energy Convers. Manag. 2019, 192, 321–334. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Q.; Wang, Q. Energy storage analysis of UIO-66 and water mixed nanofluids: An experimental and theoretical study. Energies 2019, 12, 2521. [Google Scholar] [CrossRef]
- Usman, M.; Imran, M.; Yang, Y.; Lee, D.H.; Park, B. Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions. Energy 2017, 123, 353–366. [Google Scholar] [CrossRef]
- Hooman, K. Dry cooling towers as condensers for geothermal power plants. Int. Commun. Heat Mass 2010, 37, 1215–1220. [Google Scholar] [CrossRef]
- NIST Webbook. Available online: http://webbook.nist.gov/chemistry/fluid/ (accessed on 1 June 2019).
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties Refprop; Version 9.1; NIST: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Pioro, I.L.; Khartabil, H.F.; Duffey, R.B. Heat transfer to supercritical fluids flowing in channels—Empirical correlations (survey). Nucl. Eng. Des. 2004, 230, 69–91. [Google Scholar] [CrossRef]
- Petukhov, B.S. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties. In Advances in Heat Transfer; Hartnett, J.P., Irvine, T.F., Eds.; Elsevier: Amsterdam, The Netherlands, 1970; pp. 503–564. [Google Scholar]
- Cengel, Y.A.; Klein, S.; Beckman, W. Heat Transfer: A Practical Approach; McGraw-Hill: New York, NY, USA, 1998; Volume 141. [Google Scholar]
- Kröger, D.G. Air-Cooled Heat Exchangers and Cooling Towers; PennWell Books: Tulsa, OK, USA, 2004; Volume 1. [Google Scholar]
Parameter | Value |
---|---|
Thermal power of heat source (kW) | 500.00 |
Annual average air temperature (K) | 298.15 |
Isentropic turbine efficiency | 0.70 |
Isentropic pump efficiency | 0.80 |
Turbine inlet temperature (K) | 423.15 |
Turbine inlet pressure (MPa) | 15.00 |
Pressure losses | 0.00 |
Loss Coefficient | Equation |
---|---|
The tower support loss coefficient, Kts | |
Contraction loss coefficient, Kctc | |
Expansion loss coefficient, Kcte | |
Cooling tower inlet loss coefficient, Kct | Terblanche and Kroger correlation |
Cooling tower outlet loss coefficient, Kto | |
Heat exchanger loss coefficient, Khe | Characteristic Reynolds number, |
Parameter | Unit | Value |
---|---|---|
Aspect ratio of cooling tower, H5/d3 | - | 1.40 |
Tower inlet height, H3 | m | 5.00 |
Tower diameter ratio, d5/d3 | - | 0.70 |
Heat exchanger coverage of tower inlet, Afr/A3 | - | 0.65 |
Number of tower supports, nts | - | d3/(82.96/60) |
Length of tower support, Lts | m | H3 × (15.78/13.67) |
Heat Exchanger Parameter | Unit | Value |
---|---|---|
Hydraulic diameter of tube | m | 9.00 × 10−3 |
Inside area of tube per unit length | m2 | 2.85 × 10−2 |
Inside cross-sectional flow area | m2 | 6.40 × 10−5 |
Length of finned tube | m | 3.84 |
Effective length of tube | m | 3.79 |
Number of tube rows | - | 5 |
Number of tubes per bundles | - | 220 |
Number of water passes | - | 10 |
Number of bundles | - | 18 |
Total effective frontal area | m2 | 76.60 |
Fin root diameter | m | 9.50 × 10−3 |
Fin pitch | m | 2.10 × 10−3 |
Plant Solution | Value |
---|---|
Turbine inlet temperature (K) | 423.15 |
Turbine inlet pressure (MPa) | 12.45 |
Cycle efficiency (%) | 7.42 |
Plant power output (kW) | 37.11 |
Condensing temperature (K) | 308.15 |
CO2/R161 mass fraction ratio | 0.5/0.5 |
Vapor fraction at turbine outlet (%) | 100.00 |
Turbine outlet temperature (K) | 345.00 |
Mass flow rate of the working fluid (kg·s−1) | 1.62 |
Heat rejection (kW) | 462.89 |
Parameters | Cooling Tower System |
---|---|
Tower height (m) | 10.00 |
Tower outlet diameter (m) | 5.00 |
Tower inlet diameter (m) | 7.14 |
Tower inlet height (m) | 4.00 |
Number of heat exchanger bundles | 7 |
Frontal area (m2) | 29.80 |
Working fluid inlet temperature (K) | 345.00 |
Working fluid outlet temperature (K) | 307.98 |
Working fluid inlet pressure (MPa) | 3.89 |
Working fluid mass flow (kg·s−1) | 1.62 |
Heat rejection (kW) | 463.00 |
Air mass flow (kg·s−1) | 22.20 |
Air mean outlet temperature (K) | 318.85 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Tang, J.; Zhang, C.; Li, Q. Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO2/R161 Mixture Based on Natural Draft Dry Cooling Towers. Energies 2019, 12, 3342. https://doi.org/10.3390/en12173342
Zhou Y, Tang J, Zhang C, Li Q. Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO2/R161 Mixture Based on Natural Draft Dry Cooling Towers. Energies. 2019; 12(17):3342. https://doi.org/10.3390/en12173342
Chicago/Turabian StyleZhou, Yingjie, Junrong Tang, Cheng Zhang, and Qibin Li. 2019. "Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO2/R161 Mixture Based on Natural Draft Dry Cooling Towers" Energies 12, no. 17: 3342. https://doi.org/10.3390/en12173342
APA StyleZhou, Y., Tang, J., Zhang, C., & Li, Q. (2019). Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO2/R161 Mixture Based on Natural Draft Dry Cooling Towers. Energies, 12(17), 3342. https://doi.org/10.3390/en12173342