Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine
Abstract
:1. Introduction
2. Results
2.1. Experimental Setup and Procedure
2.2. Experimental Methods
2.3. The Basic Physical Properties of Diluent Gases
3. Results and Discussion
3.1. Effect of Dilution Gases on Combustion Characteristics
3.2. Effect of Dilution Gases on NOx Emissions
3.3. Effect of Dilution Gases on total hydro carbons (THC) Emissions
3.4. Effect of Dilution Gases on Brake-Specific Fuel Consumption (BSFC)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
SI | spark ignition | DF | dilution factor |
CI | combustion ignition | air mass flow for stoichiometric combustion | |
BTE | brake thermal efficiency | practical injecting methanol mass flow | |
CR | compression ratio | theoretical air fuel ratio of methanol | |
BSFC | break-specific fuel consumption | mgas | mass flow rates of diluents |
COVIMEP | mean effective pressure cyclic variation | mair | practical air mass flow |
EGR | exhaust gas recirculation | α | dilution factor |
λ | excess air coefficient | cp | heat capacity at constant pressure |
κ | variation in specific heat ratio | cv | heat capacity at constant volume |
CA10 | combustion start point | CA50 | combustion left |
DEP | dilution effect percentage | ConAr | reduced NOx concentration by Ar |
Contotal | reduced NOx concentration by diluent (Ar, CO2, NOx) | BTDC | before top dead left |
ATDC | after top dead left | THC | total hydro carbons |
GDI | gasoline direct injection | CA | crank angle |
References
- Benajes, J.; García, A.; Monsalve-Serrano, J.; Balloul, I.; Pradel, G. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Convers. Manag. 2016, 123, 381–391. [Google Scholar] [CrossRef]
- Abdelaal, M.M.; Hegab, A.H. Combustion and emissions characteristics of a natural gas-fueled diesel engine with EGR. Energy Convers. Manag. 2012, 64, 301–312. [Google Scholar] [CrossRef]
- Jiansen, Y. Artificial neural network modeling of methanol production from syngas. Pet. Sci. Technol. 2019, 37, 629–632. [Google Scholar]
- Leach, F.C.; Stone, R.; Richardson, D.; Turner, J.W.; Lewis, A.; Akehurst, S.; Remmert, S.; Campbell, S.; Cracknell, R. The effect of oxygenate fuels on PN emissions from a highly boosted GDI engine. Fuel 2018, 225, 277–286. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Zhang, Q.; Zhang, X.; Yang, B.; Zeng, K. Effects of spark timing and methanol addition on combustion characteristics and emissions of dual-fuel engine fuelled with natural gas and methanol under lean-burn condition. Energy Convers. Manag. 2019, 181, 519–527. [Google Scholar] [CrossRef]
- Turner, J.W.; Lewis, A.G.; Akehurst, S.; Brace, C.J.; Verhelst, S.; Vancoillie, J.; Sileghem, L.; Leach, F.; Edwards, P.P. Alcohol fuels for spark-ignition engines: Performance, efficiency and emission effects at mid to high blend rates for binary mixtures and pure components. Inst. Mech. Eng. 2018, 232, 36–56. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.K.; Karare, H.; Dhar, A. Combustion, performance, emissions and particulate characterization of a methanol–gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Process. Technol. 2014, 121, 16–24. [Google Scholar] [CrossRef]
- Soni, D.K.; Gupta, R. Optimization of methanol powered diesel engine: A CFD approach. Appl. Therm. Eng. 2016, 106, 390–398. [Google Scholar] [CrossRef]
- Svensson, E.; Li, C.; Shamun, S.; Johansson, B.; Tuner, M.; Perlman, C.; Lehtiniemi, H.; Mauss, F. Potential Levels of Soot, NOx, HC and CO for Methanol Combustion; 2016-01-0887; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- Nguyen, D.-K.; Sileghem, L.; Verhelst, S. Exploring the potential of reformed-exhaust gas recirculation (R-EGR) for increased efficiency of methanol fueled SI engines. Fuel 2019, 236, 778–791. [Google Scholar] [CrossRef]
- Di Blasio, G.; Belgiorno, G.; Beatrice, C. Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio. Appl. Energy 2017, 204, 726–740. [Google Scholar] [CrossRef]
- Srivastava, D.K.; Agarwal, A.K. Combustion characteristics of a variable compression ratio laser-plasma ignited compressed natural gas engine. Fuel 2018, 214, 322–329. [Google Scholar] [CrossRef]
- Ibrahim, A.; Bari, S. Effect of varying compression ratio on a natural gas SI engine performance in the presence of EGR. Energy Fuels 2009, 23, 4949–4956. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.S.; Tunér, M.; Im, H.G.; Johansson, B. Investigation on a high-stratified direct injection spark ignition (DISI) engine fueled with methanol under a high compression ratio. Appl. Therm. Eng. 2019, 148, 352–362. [Google Scholar] [CrossRef]
- Celik, M.B.; Özdalyan, B.; Alkan, F. The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel 2011, 90, 1591–1598. [Google Scholar] [CrossRef]
- Fontana, G.; Galloni, E. Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation. Appl. Energy 2010, 87, 2187–2193. [Google Scholar] [CrossRef]
- Ishida, M.; Yamamoto, S.; Ueki, H.; Sakaguchi, D. Remarkable improvement of NOx–PM trade–off in a diesel engine by means of bioethanol and EGR. Energy 2010, 35, 4572–4581. [Google Scholar] [CrossRef]
- Zamboni, G.; Capobianco, M. Influence of high and low pressure EGR and VGT control on in-cylinder pressure diagrams and rate of heat release in an automotive turbocharged diesel engine. Appl. Therm. Eng. 2013, 51, 586–596. [Google Scholar] [CrossRef]
- Xie, F.; Hong, W.; Su, Y. Effect of external hot EGR dilution on combustion, performance and particulate emissions of a GDI engine. Energy Convers. Manag. 2017, 142, 69–81. [Google Scholar] [CrossRef]
- Belgiornoa, G.; Dimitrakopoulos, N. Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine. Appl. Energy 2018, 228, 2221–2234. [Google Scholar] [CrossRef]
- Ladommatos, N.; Abdelhalim, S.; Zhao, H.; Hu, Z. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions—Part 4: Effects of Carbon Dioxide and Water Vapour; SAE Paper No. 971660; Society of Automotive Engineers: Warrendale, PA, USA, 1997. [Google Scholar]
- Ladommatos, N.; Abdelhalim, S.; Zhao, H.; Hu, Z. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions—Part 1: Effect of Reducing Inlet Charge Oxygen; SAE Paper No. 961165; Society of Automotive Engineers: Warrendale, PA, USA, 1996. [Google Scholar]
- Ladommatos, N.; Abdelhalim, S.; Zhao, H.; Hu, Z. The Dilution, Chemical and Thermal Effects of Exhaust Gas Recirculation on Diesel Emissions—Part 2: Effects of Carbon Dioxide; SAE Paper No. 961167; Society of Automotive Engineers: Warrendale, PA, USA, 1996. [Google Scholar]
- Ladommatos, N.; Abdelhalim, S.; Zhao, H.; Hu, Z. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions—Part 3: Effects of Water Vapour; SAE Paper No. 971659; Society of Automotive Engineers: Warrendale, PA, USA, 1997. [Google Scholar]
- Maria, G. Buonomenna. Membrane separation of CO2 from natural gas. Recent Pat. Mater. Sci. 2017, 10, 26–49. [Google Scholar]
- Li, L.; Shen, Y. Gas turbine argon gas circulation driving system. Chinese Patent CN204716320, 21 October 2015. [Google Scholar]
- Mansor, M.R.A.; Shioji, M. Investigation of the combustion process of hydrogen jets under argon-circulated hydrogen-engine conditions. Combust. Flame 2016, 173, 245–257. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Wang, Z. Experimental investigation of the thermal and diluent effects of EGR components on combustion and NOx emissions of a turbocharged natural gas SI engine. Energy Convers. Manag. 2014, 88, 1041–1050. [Google Scholar] [CrossRef]
- Zhang, M.; Hong, W.; Xie, F. Influence of diluents on combustion and emissions characteristics of a GDI engine. Appl. Therm. Eng. 2017, 124, 746–755. [Google Scholar] [CrossRef]
- Zheng, M.; Reader, G.; Hawley, J. Diesel engine exhaust gas recirculation—A review on advanced and novel concepts. Energy Convers. Manag. 2004, 45, 883–900. [Google Scholar] [CrossRef]
- Brecq, G.; Bellettre, J.; Tazerout, M.; Muller, T. Knock prevention of CHP engines by addition of N and CO to the natural gas fuel. Appl. Therm. Eng. 2003, 23, 1359–1371. [Google Scholar] [CrossRef]
- Parka, C.; Lee, S. Full load performance and emission characteristics of hydrogen-compressed natural gas engines with valve overlap changes. Fuel 2014, 123, 101–105. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Srinvasan, K.K.; Krishnan, S.R.; Qi, Y.; Midkiff, C.; Yang, H. Analysis of diesel pilot ignited natural gas low-temperature combustion with hot exhaust gas recirculation. Combust. Sci. Technol. 2007, 179, 1737–1776. [Google Scholar] [CrossRef]
- Park, C.; Won, S.; Kim, C.; Choi, Y. Effect of mixing CO with natural gas–hydrogen blends on combustion in heavy-duty spark ignition engine. Fuel 2012, 102, 299–304. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Wang, Z. Experimental and theoretical analysis of effects of N, O2 and Ar in excess air on combustion and NOx emissions of a turbocharged NG engine. Energy Convers. Manag. 2015, 97, 253–264. [Google Scholar] [CrossRef]
- Bendu, H.; Sivalingam, M. Experimental investigation on the effect of charge temperature on ethanol fueled HCCI combustion engine. J. Mech. Sci. Technol. 2016, 30, 4791–4799. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, C.; Fu, J. Experimental and numerical investigation on diluted DME flames: Thermal and chemical kinetic effects on laminar flame speeds. Fuel 2012, 102, 567–573. [Google Scholar] [CrossRef]
- Prathap, C.; Ray, A. Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combust. Flame 2008, 155, 145–160. [Google Scholar] [CrossRef]
- Lide, D.R. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Teng, H.; Mccandless, J.C.; Schneyer, J.B. Themochemical Characteristics of Dimethyl Ether an Alternative Fuel for Compression-ignition Engines; SAE Paper, 2001-01-0154; SAE: Warrendale, PA, USA, 2001. [Google Scholar]
- Dernotte, J.; Mounaim-Rousselle, C.; Halter, F.; Seers, P. Evaluation of butanolgasoline blends in a port fuel-injection, spark-ignition engine. Oil Gas Sci. Technol. 2010, 65, 345–351. [Google Scholar] [CrossRef]
- Iodice, P.; Senatore, A.; Langella, G.; Amoresano, A. Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation. Appl. Energy 2016, 179, 182–190. [Google Scholar] [CrossRef]
- Lavoie, G.A.; Blumberg, P.N. A fundamental model for predicting fuel consumption, NOx and HC emissions of the conventional spark-ignited engine. Combust. Sci. Technol. 1980, 21, 225–258. [Google Scholar] [CrossRef]
Engine Properties | Specifications |
---|---|
Bore/Stroke | 85 mm/88 mm |
Connecting rod length | 175 mm |
Displacement | 1.997 L |
Compression ratio | 17.5:1 |
Intake valve opening | 3870 CA BTDC |
Intake valve closing | 1440 CA ATDC |
Species | ||||
---|---|---|---|---|
CO2 | 22.26 | 59.811 | −35.01 | 7.47 |
N2 | 28.9 | −1.570 | 8.081 | −28.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Hong, W.; Yang, Y.; Li, X.; Xie, F.; Su, Y. Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine. Energies 2019, 12, 3366. https://doi.org/10.3390/en12173366
Zhou Y, Hong W, Yang Y, Li X, Xie F, Su Y. Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine. Energies. 2019; 12(17):3366. https://doi.org/10.3390/en12173366
Chicago/Turabian StyleZhou, You, Wei Hong, Ye Yang, Xiaoping Li, Fangxi Xie, and Yan Su. 2019. "Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine" Energies 12, no. 17: 3366. https://doi.org/10.3390/en12173366
APA StyleZhou, Y., Hong, W., Yang, Y., Li, X., Xie, F., & Su, Y. (2019). Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine. Energies, 12(17), 3366. https://doi.org/10.3390/en12173366