CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions
Abstract
:1. Introduction
- Charge cooling due to water evaporation, before combustion takes place.
- Charge dilution that slows down flame speed and delays autoignition, because of combined effects of reduced chemistry speed and increased mixture heat capacity in presence of water vapor.
- Modified ratio of specific heats (γ = cp/cv) which affects compression and expansion work and the overall efficiency.
2. Engine Description and Computational Setup
2.1. Experimental Setup
2.2. Computational Setup
3. Spray Validation
3.1. Port Water Injector
3.2. Port Water Injector
4. PWI Multi-Cycle Simulations
4.1. Water Spray Dynamics in the Intake Runner and Ports
4.2. Impact on Combustion
5. Results under Similar KLSA
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoppe, F.; Thewes, M.; Baumgarten, H.; Dohmen, J. Water injection for gasoline engines: Potentials, challenges, and solutions. Int. J. Engine Res. 2016, 17, 86–96. [Google Scholar] [CrossRef]
- Hoppe, F.; Thewes, M.; Seibel, J.; Balazs, A.; Scharf, J. Evaluation of the Potential of Water Injection for Gasoline Engines. SAE Int. J. Engines 2017, 10, 2500–2512. [Google Scholar] [CrossRef]
- Thewes, M.; Baumgarten, H.; Scharf, J.; Birmes, G.; Balazs, A.; Lehrheuer, B.; Hoppe, F. Water Injection–High Power and High Efficiency Combined. In Proceedings of the 25th Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, 10–12 October 2016. [Google Scholar]
- Pauer, T.; Frohnmaier, M.; Walther, J.; Schenk, P.; Hettinger, A.; Kampmann, S. Optimization of Gasoline Engines by Water Injection. In Proceedings of the 37th International Vienna Motor Symposium, Vienna, Austria, 28–29 April 2016. [Google Scholar]
- Bozza, F.; De Bellis, V.; Teodosio, L. Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines. Appl. Energy 2016, 169, 112–125. [Google Scholar] [CrossRef]
- Iacobacci, A.; Marchitto, L.; Valentino, G. Water Injection to Enhance Performance and Emissions of a Turbocharged Gasoline Engine under High Load Condition. SAE Int. J. Engines 2017, 10, 928–937. [Google Scholar] [CrossRef]
- Battistoni, M.; Grimaldi, C.; Cruccolini, V.; Discepoli, G.; De Cesare, M. Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine through Multi-Cycle CFD Simulations; SAE Technical Paper 2017-24-0034; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Zhu, S.; Hu, B.; Akehurst, S.; Copeland, C.; Lewis, A.; Yuan, H.; Kennedy, I.; Bernards, J.; Branney, C. A review of water injection applied on the internal combustion engine. Energy Convers. Manag. 2019, 184, 139–158. [Google Scholar] [CrossRef]
- Cavina, N.; Rojo, N.; Businaro, A.; Brusa, A.; Corti, E.; De Cesare, M. Investigation of Water Injection Effects on Combustion Characteristics of a GDI TC Engine. SAE Int. J. Engines 2017, 10, 2209–2218. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, L.; Han, J.; Chen, X. Investigating the effect of increasing specific heat and the influence of charge cooling of water injection in a TGDI engine. Appl. Therm. Eng. 2019, 149, 1105–1113. [Google Scholar] [CrossRef]
- D’Adamo, A.; Berni, F.; Breda, S.; Lugli, M.; Fontanesi, S.; Cantore, G. A Numerical Investigation on the Potentials of Water Injection as a Fuel Efficiency Enhancer in Highly Downsized GDI Engines; SAE Technical Paper 2015-01-0393; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Robert, A.; Richard, S.; Colin, O.; Poinsot, T. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine. Combust. Flame 2015, 162, 2788–2807. [Google Scholar] [CrossRef] [Green Version]
- Berni, F.; Breda, S.; Lugli, M.; Cantore, G. A Numerical Investigation on the Potentials of Water Injection to Increase Knock Resistance and Reduce Fuel Consumption in Highly Downsized G132DI Engines. Energy Procedia 2015, 81, 826–835. [Google Scholar] [CrossRef]
- D’Adamo, A.; Breda, S.; Iaccarino, S.; Berni, F.; Fontanesi, S.; Zardin, B.; Borghi, M.; Irimescu, A.; Merola, S. Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine. SAE Int. J. Engines 2017, 10, 722–739. [Google Scholar] [CrossRef]
- Linse, D.; Kleemann, A.; Hasse, C. Probability density function approach coupled with detailed chemical kinetics for the prediction of knock in turbocharged direct injection spark ignition engines. Combust. Flame 2014, 161, 997–1014. [Google Scholar] [CrossRef]
- Chevillard, S.; Colin, O.; Bohbot, J.; Wang, M.; Pomraning, E.; Senecal, P.K. Advanced Methodology to Investigate Knock for Downsized Gasoline Direct Injection Engine Using 3D RANS Simulations; SAE Technical Paper 2017-01-0579; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Richards, K.J.; Senecal, P.K.; Pomraning, E. CONVERGE v.2.4 Documentation; Convergent Sciences Inc: Madison, WI, USA, 2017. [Google Scholar]
- Senecal, P.K.; Pomraning, E.; Richards, K.J.; Som, S. Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations. ASME J. Energy Resour. Technol. 2014, 136, 012204-1. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Han, Z.; Reitz, R.D. Turbulence Modeling of Internal Combustion Engines Using RNG k–ε Models. Combust. Sci. Technol. 1995, 106, 267–295. [Google Scholar] [CrossRef]
- Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Gulder, O.L. Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels; SAE Technical Paper 841000; SAE International: Warrendale, PA, USA, 1984. [Google Scholar]
- Metghalchi, M.; Keck, J.C. Burning Velocities of Mixtures of Air with Methanol, Isooctane and Indolene at High Pressure and Temperature. Combust. Flame 1982, 48, 191–210. [Google Scholar] [CrossRef]
- Andrae, J.C.G.; Brinck, T.; Kalghatgi, G.T. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model. Combust. Flame 2008, 155, 696–712. [Google Scholar] [CrossRef]
- Neal, M.; Smallbone, A.; Bhave, A.; Kraft, M.; Cracknell, R.; Kalghatgi, G.T. Mapping surrogate gasoline compositions into RON/MON space. Combust. Flame 2010, 157, 1122–1131. [Google Scholar] [CrossRef]
- Zembi, J.; Mariani, F.; Battistoni, M. Large Eddy Simulation of Ignition and Combustion Stability in a Lean SI Optical Access Engine; SAE Technical Paper 2019-24-0087; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
Engine Specifications | Value |
---|---|
Displaced volume | 1390 cm3 (4 cylinders) |
Stroke | 75.6 mm |
Bore | 76.5 mm |
Compression ratio | 10:1 |
Valves per cylinder | 4 |
Intake valve opening/closing | 372/588 CAD aTDCf |
Exhaust valve opening/closing | 140/364 CAD aTDCf |
Fuel | Commercial Gasoline RON = 95, MON = 85 |
Max torque | 220 Nm, at 1500–4000 rpm |
Max power | 103 kW at 6000 rpm |
Operating Point Specifications | Value |
---|---|
Engine speed | 2500 rpm |
Equivalence ratio (Φ) | 1.0 |
Injected fuel mass | 35.19 mg |
GDI injector nozzle | 5 holes |
Injected fuel temperature | 343 K |
Start of injection (SOI) | −276.5 CAD aTDCf |
Duration of injection | 59.5 CAD |
Gasoline injection pressure | 110 bar |
Spark timing | −14 CAD aTDCf |
Intake manifold pressure (ave.) | 1.5 bar |
Exhaust pressure (ave.) | 1.8 bar |
Test Conditions | Value |
---|---|
Nozzle type | 3 holes Hole diameter = 140 μm Global spray angle = αF = 26° (front view) Global spray angle = αL = 28° (lateral view) Spray axis angle = β = 6° |
Spray boundary condition | Near cone angle = 26° Pre-atomized drops, using a Rosin Rammler distribution with SMD = 65 μm Cd = 0.74 |
Fluid injected | Water |
Injected mass | 8.39 mg |
Injected fluid temperature | 298 K |
Injection pressure | 6 bar |
Injection duration | 7.635 ms (hydraulic duration) |
Chamber temperature | 373 K |
Chamber pressure | 1 bar |
Test Conditions | Value |
---|---|
Nozzle type | 5 holes Hole diameter = 175 μm Global spray angle = 82° (front view) Global spray angle = 54° (lateral view) Spray axis angle = β = 6° |
Spray boundary condition | Near cone angle = 20° Pre-atomized drops, using a Rosin Rammler distribution with SMD = 15 μm Cd = 0.603 |
Fluid injected | Exxsol-D40 |
Injected mass | 5.37 mg |
Injected fluid temperature | 298 K |
Injection pressure | 100 bar |
Injection duration | 0.6 ms (hydraulic duration) |
Chamber temperature | 298 K |
Chamber pressure | 1 bar |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zembi, J.; Battistoni, M.; Ranuzzi, F.; Cavina, N.; De Cesare, M. CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions. Energies 2019, 12, 3409. https://doi.org/10.3390/en12183409
Zembi J, Battistoni M, Ranuzzi F, Cavina N, De Cesare M. CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions. Energies. 2019; 12(18):3409. https://doi.org/10.3390/en12183409
Chicago/Turabian StyleZembi, Jacopo, Michele Battistoni, Francesco Ranuzzi, Nicolò Cavina, and Matteo De Cesare. 2019. "CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions" Energies 12, no. 18: 3409. https://doi.org/10.3390/en12183409
APA StyleZembi, J., Battistoni, M., Ranuzzi, F., Cavina, N., & De Cesare, M. (2019). CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions. Energies, 12(18), 3409. https://doi.org/10.3390/en12183409