Dye-Sensitized Solar Cells Using Aluminum-Doped Zinc Oxide/Titanium Dioxide Photoanodes in Parallel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the AZO Seed Layer
2.3. Fabrication of the ZnO Nanorods and AZO Nanosheets
2.4. Fabrication of the DSSCs with ZnO Nanorods/TiO2 Photoanodes and AZO Nanosheets/TiO2 Photoanodes
2.5. Fabrication of Packaging for DSSCs in Parallel Connection
2.6. Instruments
3. Results and Discussion
3.1. Characterization of ZnO Nanorods and AZO Nanosheets
3.2. Ultraviolet-Visible Spectroscopy
3.3. Electrochemical Impedance Spectroscopy (EIS)
3.4. Photovoltaic Performance of DSSCs Based on ZnO Nanorods/TiO2 and AZO Nanosheets/TiO2
3.5. Photovoltaic Performances of DSSCs in Parallel Connection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, B.; Wang, L.; Kang, B.; Qiu, Y. Review of recent progress in solid-state dyesensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 549–573. [Google Scholar] [CrossRef]
- Jiang, A.Y.; Xu, J.; Sun, Y.; Wei, C.; Wang, J.; Ke, D.; Li, X.; Yang, J.; Peng, X.; Tang, B. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system. Appl. Energy 2017, 190, 1126–1137. [Google Scholar] [CrossRef]
- Chilkoti, V.; Bolisetti, T.; Balachandar, R. Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renew. Energy 2017, 109, 510–517. [Google Scholar] [CrossRef]
- Tonini, D.; Vadenbo, C.; Astrup, T.F. Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective. Energy 2017, 124, 295–309. [Google Scholar] [CrossRef]
- Martin, S.S.; Chebak, A. Concept of educational renewable energy laboratory integrating wind, solar and biodiesel energies. Int. J. Hydrogen Energy 2016, 41, 21036–21046. [Google Scholar] [CrossRef]
- Donaldson, R.; Lord, E. Challenges for the implementation of the renewable heat incentive—An example from a school refurbishment geothermal scheme. Sustain. Energy Technol. Assess. 2014, 7, 30–33. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Baranoff, E.; Grätzel, M. Dye-sensitized solar cells: A brief overview. Sol. Energy 2011, 85, 1172–1178. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.; Yeh, C.Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
- Qiu, J.; Guo, M.; Wang, X. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 2358–2367. [Google Scholar] [CrossRef]
- Balasingam, S.K.; Kang, M.G.; Jun, Y. Metal substrate based electrodes for flexible dyesensitized solar cells: Fabrication methods, progress and challenges. Chem. Commun. 2013, 49, 11457–11475. [Google Scholar] [CrossRef]
- Balasingam, S.K.; Kang, M.G.; Jun, Y. Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem. Commun. 2013, 49, 1471–1487. [Google Scholar] [CrossRef] [PubMed]
- Obotowo, I.N.; Boot, I.B.; Eka, U.J. Organic sensitizers for dye sensitized solar cell(DSSC): Properties from computation, progress and future perspectivites. J. Mol. Struct. 2016, 1122, 80–87. [Google Scholar] [CrossRef]
- Lee, S.H.; Han, S.H.; Jung, H.S.; Shin, H.; Lee, J. Al-doped ZnO thin film: A new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 7185–7189. [Google Scholar] [CrossRef]
- Chou, J.C.; You, P.H.; Liao, Y.H.; Lai, C.H.; Chu, C.M.; Lin, Y.J.; Hsu, W.; Li, Y.C.C.; Nien, Y.H. Fabrication and photovoltaic properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanode with ZnO nanowires view document. IEEE Trans. Semiconduct. 2017, 30, 531–538. [Google Scholar] [CrossRef]
- Chou, J.C.; Hsu, W.Y.; Liao, Y.H.; Lai, C.H.; Lin, Y.J.; You, P.H.; Chu, C.M.; Lu, C.C.; Nien, Y.H. Photovoltaic analysis of platinum counter electrode modified by graphene oxide and magnetic beads for dye-sensitized solar cell. IEEE Trans. Semiconduct. 2017, 30, 270–275. [Google Scholar] [CrossRef]
- Chou, J.C.; You, P.H.; Liao, Y.H.; Lai, C.H.; Chu, C.M.; Lin, Y.J.; Hsu, W.Y.; Li, C.C.; Nien, Y.H. An investigation on the photovoltaic properties of dye-sensitized solar cells based on Fe3O4-TiO2 composited photoanode. IEEE J. Electron. Dev. 2016, 4, 402–409. [Google Scholar]
- Yu, X.; Yu, X.; Zhang, J.; Hu, Z.; Zhao, G.; Zhao, Y. Effective light trapping enhanced near-UV/blue light absorption in inverted polymer solar cells via sol-gel textured Al-doped ZnO buffer layer. Sol. Energy Mater. Sol. Cells 2014, 121, 28–34. [Google Scholar] [CrossRef]
- Baradaran, M.; Ghodsi, F.E.; Bittencourt, C.; Llobet, E. The role of Al concentration on improving the photocatalytic performance of nanostructured ZnO/ZnO:Al/ZnO multilayer thin films. J. Alloys Compd. 2019, 788, 289–301. [Google Scholar] [CrossRef]
- Ajala, F.; Hamrouni, A.; Houas, A.; Lachheb, H.; Megna, B.; Palmisano, L.; Parrino, F. The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water. Appl. Surf. SCI 2018, 445, 376–382. [Google Scholar] [CrossRef]
- Shivaraj, B.W.; Narasimha, M.H.N.; Krishna, M.; Satyanarayana, B.S. Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by RF magnetron sputtering. Procedia Mater. Sci. 2015, 10, 292–300. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Peer, A.; Joshi, P.H.; Biswas, R.; Dalal, V.L. Blue photon management by inhouse grown ZnO:Al cathode for enhanced photostability in polymer solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.P.; Lin, J.C.; Wang, Y.C.; Chou, C.Y.; Yeh, M.H.; Vittal, R.; Ho, K.C. Synthesis of hexagonal ZnO clubs with opposite faces of unequal dimensions for the photoanode of dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2011, 13, 20999–21008. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.; Zhang, W.; Fan, J.; Deng, H.; Cheng, W. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. J. Alloys Compd. 2011, 509, 961–965. [Google Scholar] [CrossRef]
- Chang, J.; Ahmed, R.; Wang, H.; Liu, H.; Li, R.; Wang, P.; Waclawik, E.R. ZnO nanocones with high-Index {1011} facets for enhanced energy conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. C 2013, 117, 13836–13844. [Google Scholar] [CrossRef]
- Chou, J.C.; Ko, C.C.; Kuo, P.Y.; Lai, C.H.; Nien, Y.H.; Chang, J.X. Fabrication of dye-sensitized solar cells using zinc oxide nanorod-modified titanium dioxide photoanode. IEEE Trans. Nanotechnol. 2019, 19, 553–561. [Google Scholar] [CrossRef]
- Kim, K.H.; Utashiro, K.; Abe, Y.; Kawamura, M. Structural properties of zinc oxide nanorods grown on Al-doped zinc oxide seed layer and their applications in dye-sensitized solar cells. Materials 2014, 7, 2522–2533. [Google Scholar] [CrossRef]
- Young, S.J.; Liu, Y.H. Field emission properties of Al-doped ZnO nanosheet based on field emitter device with UV exposure. RSC Adv. 2017, 7, 14219–14223. [Google Scholar] [CrossRef] [Green Version]
- Bella, F.; Gallia, S.; Piana, G.; Giacona, G.; Viscardi, G.; Grätzel, M.; Barolob, C.; Gerbaldi, C. Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment. Electrochimica Acta 2019, 302, 31–37. [Google Scholar] [CrossRef]
- Craciun, P.V.; Garoi, F.; Staicu, A. Effect of annealing treatment on the structural and optical propertiesof AZO samples. Appl. Surf. SCI 2015, 352, 23–27. [Google Scholar]
- Yang, T.; Song, S.; Li, Y.; Xin, Y.; Du, G.; Lv, M.; Han, S. The enhanced conductivity and stability of AZO thin films with a TiO2 buffer layer. Physica B 2012, 407, 4518–4522. [Google Scholar] [CrossRef]
- Li, C.; Hou, S. Comparison of the photoluminescence properties of ZnO nanorods synthesized by multi-annealing and chemical bath deposition methods. ITE Trans. MTA 2016, 4, 320–325. [Google Scholar] [CrossRef]
- Shrisha, B.V.; Bhat, S.; Kushavah, D.; Naik, K.G. Hydrothermal growth and characterization of Al-doped ZnO nanorods. Mater. Today 2016, 3, 1693–1701. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Kumar, C.S.S.P.; Punnoose, D.; Kim, S.K.; Gopi, C.V.V.M.; Rao, S.S. Facile chemical bath deposition of CuS nano peas like structure as a high efficient counter electrode for quantum-dot-sensitized solar cells. J. Electroanal. Chem. 2015, 739, 20–27. [Google Scholar] [CrossRef]
- Chou, J.C.; Chu, C.M.; Liao, Y.H.; Lai, C.H.; Lin, Y.J.; You, P.H.; Hsu, W.Y.; Lu, C.C.; Nien, Y.H. An investigation on the photovoltaic properties of dye-sensitized solar cells based on Fe3O4-TiO2 composited photoelectrode. IEEE J. Electron. Dev. 2016, 5, 32–39. [Google Scholar] [CrossRef]
- Dao, V.D.; Kim, S.H.; Choi, H.S.; Kim, J.H.; Park, H.O.; Lee, J.K. Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode. J. Phys. Chem. C 2011, 115, 25529–25534. [Google Scholar] [CrossRef]
- Chou, H.T.; Lina, K.M.; Hsu, H.C. Fabrication of TiO2 compact layer precursor at various reaction times for dye sensitized solar cells. Microelectron. Reliab. 2015, 55, 2208–2212. [Google Scholar] [CrossRef]
- Ramasamy, E.; Lee, W.J.; Lee, D.Y.; Song, J.S. Portable, parallel grid dye-sensitized solar cell module prepared by screen printing. J. Power Sour. 2007, 165, 446–449. [Google Scholar] [CrossRef]
Photoanode | Rs (Ω) | R1 (Ω) | R2 (Ω) | Reference |
---|---|---|---|---|
TiO2 | 27.00 | 13.78 | 76.43 | This work |
ZnO nanorod/TiO2 | 20.55 | 14.40 | 36.70 | This work |
AZO nanosheet/TiO2 | 23.16 | 13.34 | 44.58 | This work |
No compact layer | N/A | 11.20 | 21.70 | [36] |
Compact layer | N/A | 5.20 | 07.40 | [36] |
Photoanode | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | Active Area (cm2) | Reference |
---|---|---|---|---|---|---|
TiO2 | 0.68 ± 0.003 | 9.07 ± 0.25 | 0.60 ± 0.01 | 3.70 ± 0.20 | 0.64 | This work |
ZnO nanorod/TiO2 | 0.70 ± 0.004 | 10.91 ± 0.23 | 0.62 ± 0.01 | 4.73 ± 0.18 | 0.64 | This work |
AZO nanosheet/TiO2 | 0.71 ± 0.004 | 9.63 ± 0.28 | 0.63 ± 0.01 | 4.31 ± 0.23 | 0.64 | This work |
No compact layer | 0.73 | 4.80 | 0.50 | 1.77 | 1.10 | [37] |
Compact layer | 0.76 | 5.87 | 0.50 | 2.24 | 1.10 | [37] |
Connection | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | Active Area of Single DSSC (cm2) | Reference |
---|---|---|---|---|---|---|
1P | 0.70 | 10.91 | 0.62 | 4.73 | 00.64 | This work |
1P | 0.52 | 06.25 | 0.39 | 1.27 | 06.84 | This work |
2P | 0.68 | 09.83 | 0.54 | 3.61 | 03.42 | This work |
2P-grid | 0.68 | 9.88 | 0.60 | 4.04 | 03.42 | This work |
5P | 0.66 | 08.24 | 0.68 | 3.70 | 25.00 | [36] 2007 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, J.-C.; Ko, C.-C.; Chang, J.-X.; Lai, C.-H.; Nien, Y.-H.; Kuo, P.-Y.; Chen, H.-H.; Hsu, H.-H.; Hu, G.-M. Dye-Sensitized Solar Cells Using Aluminum-Doped Zinc Oxide/Titanium Dioxide Photoanodes in Parallel. Energies 2019, 12, 3469. https://doi.org/10.3390/en12183469
Chou J-C, Ko C-C, Chang J-X, Lai C-H, Nien Y-H, Kuo P-Y, Chen H-H, Hsu H-H, Hu G-M. Dye-Sensitized Solar Cells Using Aluminum-Doped Zinc Oxide/Titanium Dioxide Photoanodes in Parallel. Energies. 2019; 12(18):3469. https://doi.org/10.3390/en12183469
Chicago/Turabian StyleChou, Jung-Chuan, Cheng-Chu Ko, Jun-Xiang Chang, Chih-Hsien Lai, Yu-Hsun Nien, Po-Yu Kuo, Huang-Hua Chen, Hui-Hsuan Hsu, and Geng-Ming Hu. 2019. "Dye-Sensitized Solar Cells Using Aluminum-Doped Zinc Oxide/Titanium Dioxide Photoanodes in Parallel" Energies 12, no. 18: 3469. https://doi.org/10.3390/en12183469
APA StyleChou, J. -C., Ko, C. -C., Chang, J. -X., Lai, C. -H., Nien, Y. -H., Kuo, P. -Y., Chen, H. -H., Hsu, H. -H., & Hu, G. -M. (2019). Dye-Sensitized Solar Cells Using Aluminum-Doped Zinc Oxide/Titanium Dioxide Photoanodes in Parallel. Energies, 12(18), 3469. https://doi.org/10.3390/en12183469