Enhancement of Fault Feature Extraction from Displacement Signals by Suppressing Severe End Distortions via Sinusoidal Wave Reduction
Abstract
:1. Introduction
2. Signal Sampling and Discrete Fourier Spectrum of a Sinusoidal Wave
2.1. Fast Fourier Transform of Discrter Digitized Signals
2.2. Ratio-Based Spectrum Correction for High-Precision Estimation of Harmonic Information
2.2.1. Spectrum Correction Based on the Rectangle Window
2.2.2. Spectrum Correction Based on the Hanning Window
3. Compound Wavelet Dictionaries Based on Complex-Valued Wavelet Bases
3.1. Dyadic Wavelet Packet Decompositon Based on DTCWB
3.2. Construction of Implicit Wavelet Packets
3.3. Boundary Extensions in Discrete Wavelet Decomposition
4. Propagation of Strong Sinusoidal Waves in Multiscale Decompositions
4.1. Sensitivity of Displacement Signal to Low-Frequency Components
4.2. Explanations on Mechanism of the SED Effect
4.3. Numerical Simulations
5. The Proposed Method for Processing Displacement Signals
6. Case Study of Experiment Test
7. Case Study of an Engineering Application
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Randall, R.B. Vibration-Based Condition Monitoring: Industrial, Automotive and Aerospace Applications; Wiely: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lei, Y.G. Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery; Elsevier Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Wang, T.Y.; Han, Q.K.; Chu, F.L.; Feng, Z.P. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mech. Syst. Signal Process. 2019, 126, 662–685. [Google Scholar] [CrossRef]
- Sun, W.; Yao, B.; Zeng, N.; Chen, B.; He, Y.; Cao, X.; He, W. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network. Materials 2017, 10, 790. [Google Scholar] [CrossRef] [PubMed]
- Salvador, P.; Naranjo, V.; Insa, R.; Teixeira, P. Axlebox accelerations: Their acquisition and time-frequency characterisation for railway track monitoring purposes. Measurement 2016, 82, 301–312. [Google Scholar] [CrossRef]
- Tchakoua, P.; Wamkeue, R.; Ouhrouche, M.; Slaoui-Hasnaoui, F.; Tameghe, T.A.; Ekemb, G. Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies 2014, 7, 2595–2630. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Ma, C.; Zhang, K.; Cao, J. Negentropy Spectrum Decomposition and Its Application in Compound Fault Diagnosis of Rolling Bearing. Entropy 2019, 21, 490. [Google Scholar] [CrossRef]
- Cui, L.L.; Li, B.B.; Ma, J.F.; Jin, Z. Quantitative trend fault diagnosis of a rolling bearing based on Sparsogram and Lempel-Ziv. Measurement 2018, 128, 410–418. [Google Scholar] [CrossRef]
- Antoni, J. Rolling element bearing diagnostics-a tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar]
- Chen, B.Q.; Zhang, Z.S.; Zi, Y.Y.; He, Z.J.; Sun, C. Detecting of transient vibration signatures using an improved fast spatial–spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery. Mech. Syst. Signal Process. 2013, 40, 1–37. [Google Scholar] [CrossRef]
- Yan, R.; Gao, R.; Chen, X.F. Wavelets for fault diagnosis of rotary machines: A review with applications, Signal Processing. Signal Process. 2014, 96, 1–15. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, J.; Wang, X.; Xu, X. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission. Materials 2017, 10, 571. [Google Scholar] [CrossRef]
- Hemmati, F.; Orfali, W.; Gadala, M.S. Roller bearing acoustic signature extraction by wavelet packet transform, applications in fault detection and size estimation. Appl. Acoust. 2016, 104, 101–118. [Google Scholar] [CrossRef]
- Cao, X.C.; Chen, B.Q.; Yao, B.; He, W.P. Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Comput. Ind. 2019, 106, 71–84. [Google Scholar] [CrossRef]
- Chen, B.Q.; Zhang, Z.S.; Sun, C.; Li, B.; He, Z.J. Fault feature extraction of gearbox by using overcomplete rational dilation discrete wavelet transform on signals measured from vibration sensors. Mech. Syst. Signal Process. 2012, 33, 275–298. [Google Scholar] [CrossRef]
- He, W.P.; Zi, Y.Y.; Chen, B.Q.; Wu, F.; He, Z.J. Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform. Mech. Syst. Signal Process. 2015, 54–55, 457–480. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Yi, C.; Tsui, K.H.; Lin, J.H. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2018, 101, 292–308. [Google Scholar] [CrossRef]
- He, W.P.; Chen, B.Q.; Zeng, N.Y.; Zi, Y.Y. Sparsity-based signal extraction using dual Q-factors for gearbox fault detection. ISA Trans. 2018, 79, 147–160. [Google Scholar] [CrossRef]
- Sun, R.B.; Yang, Z.B.; Zhai, Z.; Chen, X.F. Sparse representation based on parametric impulsive dictionary design for bearing fault diagnosis. Mech. Syst. Signal Process. 2019, 122, 737–753. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454A, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Yao, B.; Sun, W.; Chen, B.; Yu, X.; He, Y.; Feng, W.; Wang, S. An Independent Internal Cooling System for Promoting Heat Dissipation during Dry Cutting with Numerical and Experimental Verification. Appl. Sci. 2017, 7, 332. [Google Scholar] [CrossRef]
- Lei, Y.G.; He, Z.J.; Zi, Y.Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2009, 23, 1327–1338. [Google Scholar] [CrossRef]
- Wang, Y.X.; He, Z.J.; Zi, Y.Y. A demodulation method based on local mean decomposition and its application in rub-impact fault diagnosis. Meas. Sci. Technol. 2009, 20, 025704. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.W.; Miao, Q.; Zhang, X. Time–frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2018, 103, 60–75. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Achlerkar, P.D.; Samantaray, S.R.; Manikandan, M.S. Variational Mode Decomposition and Decision Tree Based Detection and Classification of Power Quality Disturbances in Grid-Connected Distributed Generation System. IEEE Trans. Smart Grid 2018, 9, 3122–3132. [Google Scholar] [CrossRef]
- Zheng, J.; Yuan, Y.; Zou, L.; Deng, W.; Guo, C.; Zhao, H. Study on a Novel Fault Diagnosis Method Based on VMD and BLM. Symmetry 2019, 11, 747. [Google Scholar] [CrossRef]
- Fang, L.; Sun, H. Study on EEMD-Based KICA and Its Application in Fault-Feature Extraction of Rotating Machinery. Appl. Sci. 2018, 8, 1441. [Google Scholar] [CrossRef]
- Yan, X.A.; Jia, M.P. Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings. Mech. Syst. Signal Process. 2019, 122, 56–86. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, F.X.; Li, H.P.; Yan, B.K.; Liu, Y. Early fault feature extraction of bearings based on Teager energy operator and optimal VMD. ISA Trans. 2019, 86, 249–265. [Google Scholar] [CrossRef]
- Ding, K.; Xie, M.; Yang, Z.J. The Theory and Technology of Discrete Spectrum Correction; Science Press: Beijing, China, 2008. [Google Scholar]
- Selesnick, I.W.; Baraniuk, R.G.; Kingsbury, N.G. The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 2005, 22, 123–151. [Google Scholar] [CrossRef] [Green Version]
Acceleration Signal | Frequency | 100 Hz | 500 Hz | 900 Hz |
Amplitude | 4π2100 | 4π2500 | 4π2900 | |
Velocity Signal | Frequency | 100 Hz | 500 Hz | 900 Hz |
Amplitude | 2π | 2π | 2π | |
Displacement Signal | Frequency | 100 Hz | 500 Hz | 900 Hz |
Amplitude | 1/100 | 1/500 | 1/900 |
Spectrum Correction Method | Amplitude | Frequency [Hz] | Phase [rad] |
---|---|---|---|
Rectangle window-based spectrum correction | 101.5120 | 36.7102 | −0.0198 |
Hanning window-based spectrum correction | 101.5309 | 36.7110 | −0.0158 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Lan, Q.; Li, Y.; Zhuang, S.; Cao, X. Enhancement of Fault Feature Extraction from Displacement Signals by Suppressing Severe End Distortions via Sinusoidal Wave Reduction. Energies 2019, 12, 3536. https://doi.org/10.3390/en12183536
Chen B, Lan Q, Li Y, Zhuang S, Cao X. Enhancement of Fault Feature Extraction from Displacement Signals by Suppressing Severe End Distortions via Sinusoidal Wave Reduction. Energies. 2019; 12(18):3536. https://doi.org/10.3390/en12183536
Chicago/Turabian StyleChen, Binqiang, Qixin Lan, Yang Li, Shiqiang Zhuang, and Xincheng Cao. 2019. "Enhancement of Fault Feature Extraction from Displacement Signals by Suppressing Severe End Distortions via Sinusoidal Wave Reduction" Energies 12, no. 18: 3536. https://doi.org/10.3390/en12183536
APA StyleChen, B., Lan, Q., Li, Y., Zhuang, S., & Cao, X. (2019). Enhancement of Fault Feature Extraction from Displacement Signals by Suppressing Severe End Distortions via Sinusoidal Wave Reduction. Energies, 12(18), 3536. https://doi.org/10.3390/en12183536