A Mixed-Integer Second-Order Cone Programming Algorithm for the Optimal Power Distribution of AC-DC Parallel Transmission Channels
Abstract
:1. Introduction
2. Mathematical Model for the OPD of AC-DC Parallel Transmission Channels
2.1. Objective Function
2.2. Constraints
3. MISOCP Algorithm for the OPD of the AC-DC Parallel Transmission Channels
3.1. Convex Relaxation of DC Line Constraints
3.2. SOC Relaxation of the Injected Power Balance Equations of the AC Buses
3.3. Linearization of the Active Power Loss and the Transmission Power of the AC Lines
3.4. Linearization of the Step Shape Constraint of the Transmission Power Schedules of the DC Lines
4. Case Study
4.1. Structure and Parameters of the AC-DC Interconnected Power Grid
4.2. Calculation Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qin, X.; Zeng, P.; Zhou, Q.; Dai, Q.; Chen, J. Study on the development and reliability of HVDC transmission systems in China. In Proceedings of the 2016 IEEE International Conference on Power System Technology, Wollongong, NSW, Australia, 28 September–1 October 2016; pp. 1–6. [Google Scholar]
- Zhou, B.; Rao, H.; Wu, W.; Wang, T.; Hong, C.; Huang, D.; Yao, W.; Su, X.; Mao, T. Principle and Application of Asynchronous Operation of China Southern Power Grid. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1032–1040. [Google Scholar] [CrossRef]
- Shu, Y.; Chen, G.; Yu, Z.; Zhang, Z.; Wang, C.; Zheng, C. Characteristic analysis of UHVAC DC hybrid power grids and construction of power system protection. CSEE J. Power Energy Syst. 2017, 3, 325–333. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, L.; Chen, X.; Shen, P.; Zhang, J. Study on a coordinate control strategy of multi-HVDC links to improve transient stability in China Southern Power Grid. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference, Xian, China, 25–28 October 2016; pp. 1337–1342. [Google Scholar]
- Kılıç, U.; Ayan, K. A new approach for optimal reactive power flow solution of multi-terminal HVDC systems using genetic algorithm. In Proceedings of the 2013 3rd International Conference on Electric Power and Energy Conversion Systems, Istanbul, Turkey, 2–4 October 2013. [Google Scholar] [CrossRef]
- Nie, Y.; Du, Z.; Li, J. AC–DC optimal reactive power flow model via predictor–corrector primal-dual interior-point method. IET Gener. Transm. Distrib. 2013, 7, 382–390. [Google Scholar] [CrossRef]
- Yu, J.; Yan, W.; Li, W.; Chung, C.Y.; Wong, K.P. An unfixed piecewise optimal reactive power flow model and its algorithm for AC-DC systems. IEEE Trans. Power Syst. 2008, 23, 170–176. [Google Scholar] [CrossRef]
- Yu, J.; Yan, W.; Li, W.; Wen, L. Quadratic models of AC–DC power flow and optimal reactive power flow with HVDC and UPFC controls. Electr. Power Syst. Res. 2008, 78, 302–310. [Google Scholar] [CrossRef]
- Xin, H.; Gan, D.; Huang, Z.; Zhuang, K.; Gao, L. Applications of Stability-Constrained Optimal Power Flow in the East China System. IEEE Trans. Power Syst. 2010, 25, 1423–1433. [Google Scholar]
- Cao, J.; Yan, Z.; Xu, X.; He, G.; Huang, S. Optimal power flow calculation in AC/DC hybrid power system based on adaptive simplified human learning optimization algorithm. J. Mod. Power Syst. Clean Energy 2016, 4, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Aragüés-Peñalba, M.; Alvarez, A.E.; Arellano, S.G.; Gomis-Bellmunt, O. Optimal power flow tool for mixed high-voltage alternating current and high-voltage direct current systems for grid integration of large wind power plants. IET Renew. Power Gener. 2015, 9, 876–881. [Google Scholar] [CrossRef]
- Kılıç, U.; Ayan, K. Optimal power flow solution of two-terminal HVDC systems using genetic algorithm. Electr. Eng. 2014, 96, 65–77. [Google Scholar] [CrossRef]
- Cao, J.; Yan, Z.; He, G. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem. Int. J. Emerg. Electr. Power Syst. 2016, 17, 327–337. [Google Scholar] [CrossRef]
- Li, Q.; Liu, M.; Liu, H. Piecewise Normalized Normal Constraint Method Applied to Minimization of Voltage Deviation and Active Power Loss in an AC–DC Hybrid Power System. IEEE Trans. Power Syst. 2015, 30, 1243–1251. [Google Scholar] [CrossRef]
- Jabr, R.A. Radial Distribution Load Flow Using Conic Programming. IEEE Trans. Power Syst. 2006, 21, 1458–1459. [Google Scholar] [CrossRef]
- Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part II. IEEE Trans. Power Syst. 2013, 28, 2565–2572. [Google Scholar] [CrossRef]
- Bai, Y.; Zhong, H.; Xia, Q.; Kang, C.; Xie, L. A decomposition method for network-constrained unit commitment with AC power flow constraints. Energy 2015, 88, 595–603. [Google Scholar] [CrossRef]
- Taylor, J.A.; Hover, F.S. Conic AC transmission system planning. IEEE Trans. Power Syst. 2013, 28, 952–959. [Google Scholar] [CrossRef]
- Bai, Y.; Zhong, H.; Xia, Q.; Wang, Y. A Conic Programming Approach for Optimal Transmission Switching Considering Reactive Power and Voltage Security. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Ding, T.; Li, C.; Yang, Y.; Blaabjerg, F.; Zhang, Y.; Yan, H. Second-order cone programming relaxation-based optimal power flow with hybrid VSC-HVDC transmission and active distribution networks. IET Gener. Transm. Distrib. 2017, 11, 3665–3674. [Google Scholar] [CrossRef]
- Baradar, M.; Hesamzadeh, M.R.; Ghandhari, M. Second-Order Cone Programming for Optimal Power Flow in VSC-Type AC-DC Grids. IEEE Trans. Power Syst. 2013, 28, 4282–4291. [Google Scholar] [CrossRef]
- Bi, R.; Lin, T.; Chen, R.; Ye, J.; Zhou, X.; Xu, X. Alleviation of post-contingency overloads by SOCP based corrective control considering TCSC and MTDC. IET Gener. Transm. Distrib. 2018, 12, 2155–2164. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; Electric Power Research Institute; McGraw-Hill, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Lin, C.; Wei, H.; Hou, W.; Tan, J. Linear inequalities convex transformation for optimal reactive power flow model based on MISOCP relaxations. IET Gener. Transm. Distrib. 2018, 12, 1589–1594. [Google Scholar] [CrossRef]
- Gurobi. Available online: https://www.gams.com/latest/docs/S_GUROBI.html (accessed on 1 July 2019).
DC Line | Operating Pole Number | Line Resistance/Ω | Rated Voltage/kV | Rated Power/MW |
---|---|---|---|---|
Tian-Guang DC | 2 | 22.16 | ±500 | 1800 |
Gao-Zhao DC | 2 | 10.00 | ±500 | 3000 |
Xing-An DC | 2 | 12.15 | ±500 | 3000 |
Chu-Sui DC | 2 | 11.17 | ±800 | 5000 |
Pu-Qiao DC | 2 | 11.17 | ±800 | 5000 |
Niu-Cong DC | 4 | 9.664 | ±500 | 6400 |
Jin-Zhong DC | 2 | 9.17 | ±500 | 3200 |
Luxi back-to-back DC | 2 | 0.03 | ±500 | 2000 |
Section Name | Security Limit of Transmission Power/MW |
---|---|
Guizhou sending section | −300 to 3500 |
Guangdong receiving section | 0−8500 |
Optimization Time Intervals | MISOCP (GUROBI) | MINLP (SBB) | ||||
---|---|---|---|---|---|---|
Objective Function/ MWh | CPU Time/s | Solution State | Objective Function/ MWh | CPU Time/s | Solution State | |
Single time interval | 1244 | 1.5 | Integer solution | 1253 | 3.4 | Integer solution |
24 time intervals | 38,695 | 995 | Integer solution | 39,555 | 3253 | Integer cannot converge |
96 time intervals | 38,473 | 5549 | Integer solution | - | - | Non-convergent |
Quadratic Equality Constraints Relaxed as Inequalities | Maximum Relative Deviation | ||
---|---|---|---|
Single Time Interval Optimization | 24 Time Intervals Optimization | 96 Time Intervals Optimization | |
4.835745 × 10−11 | 2.267920 × 10−5 | 9.408987 × 10−6 | |
2.11384 × 10−15 | 1.164771 × 10−6 | 7.966617 × 10−6 | |
1.939844 × 10−10 | 3.14378 × 10−5 | 5.293519 × 10−5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Yang, Z.; Fan, G.; Liu, M.; He, S.; Tang, Z.; Song, Y. A Mixed-Integer Second-Order Cone Programming Algorithm for the Optimal Power Distribution of AC-DC Parallel Transmission Channels. Energies 2019, 12, 3605. https://doi.org/10.3390/en12193605
Lin S, Yang Z, Fan G, Liu M, He S, Tang Z, Song Y. A Mixed-Integer Second-Order Cone Programming Algorithm for the Optimal Power Distribution of AC-DC Parallel Transmission Channels. Energies. 2019; 12(19):3605. https://doi.org/10.3390/en12193605
Chicago/Turabian StyleLin, Shunjiang, Zhibin Yang, Guansheng Fan, Mingbo Liu, Sen He, Zhiqiang Tang, and Yunong Song. 2019. "A Mixed-Integer Second-Order Cone Programming Algorithm for the Optimal Power Distribution of AC-DC Parallel Transmission Channels" Energies 12, no. 19: 3605. https://doi.org/10.3390/en12193605
APA StyleLin, S., Yang, Z., Fan, G., Liu, M., He, S., Tang, Z., & Song, Y. (2019). A Mixed-Integer Second-Order Cone Programming Algorithm for the Optimal Power Distribution of AC-DC Parallel Transmission Channels. Energies, 12(19), 3605. https://doi.org/10.3390/en12193605