Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries
Abstract
:1. Introduction
2. Materials and Methods
- Resource assessment (identification of biomethane potentials): this criterion examines if a stand-alone assessment of the national biomethane production potential exists, based on local biomass resource availability and studies thereon by scientific or public institutions. The purpose of this criterion is to ascertain if a national effort is taken to generate knowledge about resources explicitly for biomethane production. Knowledge of resource potential is considered important for evaluating available options and developing strategic approaches for establishing a certain renewable energy product [48,49,50,51].
- Biomethane associations/organisations: here, it is examined if associations or organisations exist that aim to promote the development of biogas and/or biomethane through networking, lobbying, consulting, educational work, or further services. The purpose is to detect the interest of private market actors. The motivation for selecting these criteria is showing whether market actors in a country are interested in the development of a biomethane market.
3. Status Quo and Policy Analysis of Biogas Upgrading
3.1. European Status Quo of Biomethane
3.2. European Biomethane Market and Legislation
- While energy crops currently dominate the German biomethane market, the other European biomethane markets primarily use residues and wastes like agricultural residues, bio- and municipal waste, industrial organic waste, landfill wastes, or sewage sludge.
- Regarding the connection to the natural gas grid, the following can be observed: in Italy and Iceland, no upgrading plant is connected to the grid. In Sweden, more than 75%, in Norway and Hungary 50%, and in Finland about 42% of the upgrading plants are not connected to the grid. There against, in Germany, the United Kingdom, Switzerland, France, Denmark, the Netherlands, or the other markets more than 90% of the biomethane plants inject into the grid.
- Utilisation of biomethane in Europe varies, too. For example, in Germany, biomethane is primarily used in the power sector, whereas the primary utilisation pathway in the UK is heat production and in Sweden, the provision as an automotive fuel.
- Regarding quality requirements, it can be stated that countries like Austria, Denmark, France, Germany, and Italy have standards for both the injection of biomethane into the grid and utilisation as vehicle fuel. Other countries like the UK, the Netherlands, and Italy have a standard only for grid injection. Sweden only has a standard for the utilisation as vehicle fuel.
- National biomethane registers exist in Germany, Austria, Denmark, France, the Netherlands, and the United Kingdom. In Sweden, Italy, or Spain, there are no biomethane registers yet.
- National incentives address different utilisations. In Germany, the Renewable Energy Source Act fosters power generation from biomethane with a Feed-in-Tariff and a market premium for renewable power generation. In the UK, heat production is promoted by the Renewable Heat Incentive, and in Sweden, the incentives address the utilisation as vehicle fuel. Another approach is the promotion of grid injection, like in France or Denmark.
3.3. Status Quo of Biomethane in Selected Countries Outside the EU
3.4. Cross-Country Comparison of Biomethane Markets
3.5. Observations on Market Stability
3.6. Limitations and Opportunities for Future Research
4. Conclusions
- The necessity of an economic level playing fieldThere are heterogeneous incentives and regulations on the state level or even within a state, resulting in different costs, prices, and product properties. This leads to significant trade barriers. A renewable gas register is seen as one option that could be implemented in diverse ways [53].
- Technical uniformityUniformity regarding technical requirements for biomethane feed-in and transport as well as gas quality are seen as the core prerequisites for market development and trade. In Europe, this is realised via CEN standards such as CEN/TC 408 (Natural gas and biomethane for use in transport and biomethane for injection in the natural gas grid) and CEN/TR 17238:2018 (Proposed limit values for contaminants in biomethane based on health assessment criteria). On an international basis, ISO standards apply, e.g., for terms and classifications (ISO 20675:2018 Biogas production, conditioning, upgrading, and utilisation—Terms, definitions, and classification scheme). This shows that initial progress towards technical uniformity supporting international trade of biomethane is made, but further progress is necessary.
- Requirements for a sustainable feedstock basisA sustainable feedstock basis in combination with cross-border trade of biomethane is probably realisable via certification schemes after market-build up [65]. Activities regarding this issue are part of the upcoming RED II. Experiences from the wood pellet market can help to install a sound scheme [145].
Author Contributions
Funding
Conflicts of Interest
Appendix A. Market Background Information
Market Criteria | Germany | United Kingdom | Sweden | Brazil | Canada | China | Japan | South Korea | United States |
---|---|---|---|---|---|---|---|---|---|
Number of Upgrading Plants 1 | 194 (2017) | 85 (2017) | 63 (2017) | 5 (2017) | 9 (2018) | 73 (2017) | 6 (2014) | 10 (2017) | 77 (2018) |
Primary Type of Feedstock | Energy crops | Residues & waste | Residues & waste | Residues & waste | Residues & waste | Residues & waste | Residues & waste | Residues & waste | Residues & waste |
Consistent National Quality Standard for Grid Injection | DVGW e.V. worksheets 260 & 262 | Gas Safety Regulations 1996 &1998 | - (Locally specific quality requirements) | Resolution 08/2015 & 685/2017 | - (Gas utility specific quality requirements) | Natural gas standards: GB 17820-200x & GB17820-1999 | - (Gas utility specific quality requirements) | Based on Swedish SS 155438:1999 | - (State/gas utility specific quality requirements) |
Consistent National Quality Standard for Vehicle Fuel | DIN 51624:2008-02: Automotive fuels—Compressed natural gas—Requirements and test methods | - | SS 155438:1999 | Resolution 08/2015 & 685/2017 | - | Derived from standard for CNG: GB 18047-2000 | n.d. | Based on Swedish SS 155438:1999 | - (American SAE J1616_201703 as recommended practice for CNG quality) |
Noteworthy National Regulation(s) specific to Biomethane | Biomass Regulation; Gas Network Access Regulation; Biofuel Sustainability Regulation | Biomass Sustainability RHI Regulations; Microgeneration Certification Scheme | n.d. | Resolution 08/2015 & 685/2017 | - (Different regulations in each federal State) | Regulation on Scaled Husbandry Pollution Control (2014); Law about Environmental Protection Tax (2018): Tax for untreated waste disposal | n.d. | n.d. | - (Regulations on state-level) |
Major National Incentive(s) | Renewable Energy Source Act; Combined Heat and Power Generation Act; Renewable Energy Heat Law; Biofuel Quota Act + Federal Emission Control Act | Biomethane injection tariffs (Renewable Heat Incentive Scheme); Renewable Transport Fuels Obligation; Tax exemptions for CHP generation with biomethane (Climate Change Levy); FiT for electricity production (Closed) | Tax exemption for biomethane as automotive fuel + high taxes for fossil fuels (Law 1994:1776); Electricity certificate market (Regulation 2005/06:154); Support of heat production from biomethane (District Heat Law 2008:263) | - | - (Under development: Low Carbon Fuel Standard (LCFS)) | Investment grants for large scale biomethane projects (2015–2017); 2018: Investment grant for Fermenter construction; Tax reliefs & exemptions for biogas sector, since 2008; | FiT for electricity production; Subsidies for biogas plant construction | RPS for electricity producers; Under discussion: RFS for biomethane; National RE plant construction loans | Mandatory Renewable Fuel Standard (RFS2) |
Main Federal State Level Incentives | Renewable Heat Law (Baden-Württemberg) | n.d. | n.d. | Obligatory percentage addition of biomethane to natural gas mix in São Paulo (Decree 58.659) & Rio de Janerio (Law 6.361); Rio Grande do Sul: Provision of various tools like sales contracts or tax and credit reliefs | Obligatory percentage addition of biomethane to natural gas mix in British Columbia & Quebec; Under Development: RFS in Ontario | Subsidy for power generation; Guidance for coal replacement through electricity and gas in coal-forbidden-areas of Baoding and Langfang City | n.d. | n.d. | Established LCFS in California & Oregon; Under development LCFS in some Northeast/Mid-Atlantic states & Washington; Mandatory RPS for electricity provision in 29 States |
Major Distribution Pathway | Gas grid | Gas grid | Road transport | n.d. | Gas grid | n.d. | n.d. | n.d. | Gas grid |
Major Utilisation Pathway | >60% electricity production in CHP-units | Heat | ~60% automotive fuel ~20% Heat | ~75% automotive fuel; ~17% Heat | Heat & automotive fuel | automotive fuel | automotive fuel | automotive fuel | automotive fuel & electricity |
References
- United Nations (UN). Adoption of the Paris Agreement—Paris Agreement: Text English. Available online: http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (accessed on 21 November 2018).
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Kim, J. What is better for mitigating carbon emissions—Renewable energy or nuclear energy? A panel data analysis. Renew. Sustain. Energy Rev. 2018, 91, 464–471. [Google Scholar] [CrossRef]
- Horschig, T.; Adams, P.W.R.; Röder, M.; Thornley, P.; Thrän, D. Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. Appl. Energy 2016, 184, 840–852. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Inglesi-Lotz, R.; Dogan, E. Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application. Renew. Sustain. Energy Rev. 2018, 90, 605–622. [Google Scholar] [CrossRef]
- Mohlin, K.; Camuzeaux, J.R.; Muller, A.; Schneider, M.; Wagner, G. Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis. Energy Policy 2018, 116, 290–296. [Google Scholar] [CrossRef]
- Mandova, H.; Leduc, S.; Wang, C.; Wetterlund, E.; Patrizio, P.; Gale, W.; Kraxner, F. Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biomass Bioenergy 2018, 115, 231–243. [Google Scholar] [CrossRef]
- IEA. World Energy Balances 2018; IEA: Paris, France, 2018. [Google Scholar]
- Bloche-Daub, K.; Hartmann, H.; Hofbauer, H.; Kaltschmitt, M.; Pfeiffer, D.; Thormann, L.; Thrän, D. Einleitung und Zielsetzung. In Energie aus Biomasse; Kaltschmitt, M., Hartmann, H., Hofbauer, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–76. ISBN 978-3-662-47437-2. [Google Scholar]
- Kummamuru, B. Wba Global Bioenergy Statistics 2017; World Bioenergy Association (WBA): Stockholm, Sweden, 2017. [Google Scholar]
- Verotti, M.; Servadio, P.; Bergonzoli, S. Biogas upgrading and utilization from ICEs towards stationary molten carbonate fuel cell systems. Int. J. Green Energy 2016, 13, 655–664. [Google Scholar] [CrossRef]
- FNR. Biomethan; Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Gülzow-Prüzen, Germany, 2012. [Google Scholar]
- Billig, E. DBFZ Report Nr. 26. Ph.D. Thesis, Universität Leipzig and Helmholtz-Zentrum für Umweltforschung, Leipzig, Germany, 2016. [Google Scholar]
- Fendt, S.; Buttler, A.; Gaderer, M.; Spliethoff, H. Comparison of synthetic natural gas production pathways for the storage of renewable energy. Wires Energy Environ. 2016, 5, 327–350. [Google Scholar] [CrossRef]
- Adler, P.; Billig, E.; Brosowski, A.; Daniel-Gromke, J.; Falke, I.; Fischer, E. (Eds.) Leitfaden Biogasaufbereitung Und-Einspeisung; 5., vollständig überarbeitete Auflage; Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Gülzow-Prüzen, Germany, 2014; ISBN 3-00-018346-9. [Google Scholar]
- Miltner, M.; Makaruk, A.; Harasek, M. Review on available biogas upgrading technologies and innovations towards advanced solutions. J. Clean. Prod. 2017, 161, 1329–1337. [Google Scholar] [CrossRef]
- Jecha, D.; Niesner, J.; Stehlík, P. Biogas Upgrading Technologies: State of Art Review in Biogas Upgrading Technologies: State of Art Review in Biogas Biogas Upgrading Techniques: State of Art Review in European Region. Chem. Eng. Trans. 2013, 35, 517–522. [Google Scholar] [CrossRef]
- Aryal, N.; Kvist, T.; Ammam, F.; Pant, D.; Ottosen, L.D.M. An overview of microbial biogas enrichment. Bioresour. Technol. 2018, 264, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. Overview of recent progress towards in-situ biogas upgradation techniques. Fuel 2018, 226, 686–697. [Google Scholar] [CrossRef]
- Kougias, P.G.; Treu, L.; Benavente, D.P.; Boe, K.; Campanaro, S.; Angelidaki, I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresour. Technol. 2017, 225, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Horschig, T.; Welfle, A.; Billig, E.; Thrän, D. From Paris agreement to business cases for upgraded biogas: Analysis of potential market uptake for biomethane plants in Germany using biogenic carbon capture and utilization technologies. Biomass Bioenergy 2019, 120, 313–323. [Google Scholar] [CrossRef]
- Song, C.; Fan, Z.; Li, R.; Liu, Q.; Kitamura, Y. Efficient biogas upgrading by a novel membrane-cryogenic hybrid process: Experiment and simulation study. J. Membr. Sci. 2018, 565, 194–202. [Google Scholar] [CrossRef]
- Wellinger, A.; Petersson, A. Biogas Upgrading Technologies—Developments and Innovations; IEA Bioenergy: Paris, France, 2009. [Google Scholar]
- Dunkelberg, E. Biomethan im Energiesystem. Ökologische und ökonomische Bewertung von Aufbereitungsverfahren und Nutzungsoptionen; IÖW: Berlin, Germany, 2015; ISBN 978-3-940920-10-2. [Google Scholar]
- Kvist, T.; Aryal, N. Methane loss from commercially operating biogas upgrading plants. Waste Manag. 2019, 87, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Müller-Langer, F.; Klemm, M. Liquid and Gaseous Biofuels for the Transport Sector. In Smart Bioenergy: Technologies and Concepts for a More Flexible Bioenergy Provision in Future Energy Systems; Thrän, D., Ed.; Springer: Cham, Switzerland, 2015; pp. 107–120. ISBN 978-3-319-16192-1. [Google Scholar]
- Brown, M.A. Market failures and barriers as a basis for clean energy policies. Energy Policy 2001, 29, 1197–1207. [Google Scholar] [CrossRef]
- Horschig, T.; Adams, P.W.R.; Gawel, E.; Thrän, D. How to decarbonize the natural gas sector: A dynamic simulation approach for the market development estimation of renewable gas in Germany. Appl. Energy 2018, 213, 555–572. [Google Scholar] [CrossRef]
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.D.; Lonza, L. Review of technologies for biomethane production and assessment of Eu transport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef]
- Nizami, A.-S.; Murphy, J.D. What type of digester configurations should be employed to produce biomethane from grass silage? Renew. Sustain. Energy Rev. 2010, 14, 1558–1568. [Google Scholar] [CrossRef]
- Wang, S.; Jena, U.; Das, K.C. Biomethane production potential of slaughterhouse waste in the United States. Energy Convers. Manag. 2018, 173, 143–157. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, S. A review on biomethane potential of paddy straw and diverse prospects to enhance its biodigestibility. J. Clean. Prod. 2019, 217, 295–307. [Google Scholar] [CrossRef]
- Chinnici, G.; Selvaggi, R.; D’Amico, M.; Pecorino, B. Assessment of the potential energy supply and biomethane from the anaerobic digestion of agro-food feedstocks in Sicily. Renew. Sustain. Energy Rev. 2018, 82, 6–13. [Google Scholar] [CrossRef]
- Ardolino, F.; Arena, U. Biowaste-to-Biomethane: An LCA study on biogas and syngas roads. Waste Manag. 2019, 87, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Singlitico, A.; Goggins, J.; Monaghan, R.F.D. The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production. Renew. Sustain. Energy Rev. 2019, 99, 16–28. [Google Scholar] [CrossRef]
- Rajendran, K.; O’Gallachoir, B.; Murphy, J.D. The combined role of policy and incentives in promoting cost efficient decarbonisation of energy: A case study for biomethane. J. Clean. Prod. 2019, 219, 278–290. [Google Scholar] [CrossRef]
- Ferreira, M.; Marques, I.P.; Malico, I. Biogas in Portugal: Status and public policies in a European context. Energy Policy 2012, 43, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Eker, S.; van Daalen, E. A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty. Energy Policy 2015, 82, 178–196. [Google Scholar] [CrossRef]
- Kemausuor, F.; Adaramola, M.; Morken, J. A Review of Commercial Biogas Systems and Lessons for Africa. Energies 2018, 11, 2984. [Google Scholar] [CrossRef]
- Hafeznia, H.; Aslani, A.; Anwar, S.; Yousefjamali, M. Analysis of the effectiveness of national renewable energy policies: A case of photovoltaic policies. Renew. Sustain. Energy Rev. 2017, 79, 669–680. [Google Scholar] [CrossRef]
- Li, S.-J.; Chang, T.-H.; Chang, S.-L. The policy effectiveness of economic instruments for the photovoltaic and wind power development in the European Union. Renew. Energy 2017, 101, 660–666. [Google Scholar] [CrossRef]
- Lewis, J.; Wiser, R.H. Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms. Energy Policy 2007, 1844–1857. [Google Scholar] [CrossRef]
- Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Shrimali, G.; Srinivasan, S.; Goel, S.; Nelson, D. The effectiveness of federal renewable policies in India. Renew. Sustain. Energy Rev. 2017, 70, 538–550. [Google Scholar] [CrossRef] [Green Version]
- García-Alvarez, M.T.; Mariz-Pérez, R.M. Analysis of the Success of Feed-in Tariff for Renewable Energy Promotion Mechanism in the EU: Lessons from Germany and Spain. Procedia Soc. Behav. Sci. 2012, 65, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.; Bauknecht, D.; Connor, P.M. Effectiveness through risk reduction: A comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energy Policy 2006, 34, 297–305. [Google Scholar] [CrossRef]
- Fink, A. Conducting Research Literature Reviews. From Paper to Internet; SAGE Publications: Thousand Oaks, CA, USA, 1998. [Google Scholar]
- Gonzalez-Salazar, M.A.; Venturini, M.; Poganietz, W.-R.; Finkenrath, M.; Spina, P.R. Methodology for improving the reliability of biomass energy potential estimation. Biomass Bioenergy 2016, 88, 43–58. [Google Scholar] [CrossRef]
- Brosowski, A.; Thrän, D.; Mantau, U.; Mahro, B.; Erdmann, G.; Adler, P.; Stinner, W.; Reinhold, G.; Hering, T.; Blanke, C. A review of biomass potential and current utilisation—Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 2016, 95, 257–272. [Google Scholar] [CrossRef]
- Berndes, G.; Hoogwijk, M.; van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Brosowski, A.; Hauschild, S.; Naumann, K.; Hösel, J.; Thrän, D. Review of Technical Glycerol Potential from Biodiesel Production and Availability for Improved Cascading in Europe; DBFZ: Leipzig, Germany, 2017. [Google Scholar]
- Oxford University Press. Definition of State in English. Available online: https://en.oxforddictionaries.com/definition/state (accessed on 15 June 2018).
- Lehtovaara, M.; Karvonen, M.; Kässi, T. The Role of Energy Support Schemes in Renewable Energy Market Penetration. IJRSE 2013, 2, 30. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA Relevance): RED 2009/28/EC. Off. J. Eur. Union 2009, 140, 16–62. [Google Scholar]
- European Commission. EU Energy in Figures. Statistical Pocketbook 2018; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-88735-2. [Google Scholar]
- Eurostat. Supply, Transformation and Consumption of Renewable Energies—Annual Data. Available online: http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 21 November 2018).
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Gas Infrastructure Europe (GIE); European Biogas Association (EBA). European Biomethane Map: Infrastructure for Biomethane Production 2018. Available online: http://european-biogas.eu/wp-content/uploads/2018/01/2018.01.09.GIE_BIO_2018_A0_1189x841_FULL_415_clean_final.pdf (accessed on 21 October 2018).
- European Parliament, Council of the European Union. Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC: FQD 98/70/EC. Off. J. Eur. Union 2009, 140, 88–1132. [Google Scholar]
- European Parliament, Council of the European Union. Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources: ILUC 2015/1513. Off. J. Eur. Union 2015, 239, 1–29. [Google Scholar]
- European Committee for Standardization. EN 16723-1. 2016: Natural Gas and Biomethane for Use in Transport and Biomethane for Injection in the Natural Gas Network—Part 1: Specifications for Biomethane for Injection in the Natural Gas Network: Work Item Number: 00408006. 2016. Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0::FSP_PROJECT:59781&cs=193AB741DC4F3AE4584E03DE130F55D78 (accessed on 27 June 2018).
- European Committee for Standardization. EN 16723-2. 2017: Natural Gas and Biomethane for Use in Transport and Biomethane for Injection in the Natural Gas Network—Part 2: Automotive Fuels Specification: Work Item Number: 00408005. 2017. Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0::FSP_PROJECT:41008&cs=1D7CD581175157FBF537040E3716A707E (accessed on 27 June 2018).
- European Parliament. Sources and Scope of European Union Law. Fact Sheets on the European Union. Available online: http://www.europarl.europa.eu/ftu/pdf/en/FTU_1.2.1.pdf (accessed on 20 June 2018).
- Rogstrand, G. Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications. Overview on Administrative and Legal Conditions as Well as on Financial and Other Support Programs, for Small to Medium Scale Biomethane Production and Supply: Deliverable No. D2.1 + D2.2. 2017. Available online: https://biomethane-map.eu/regulatory-framework.82.0.html (accessed on 20 June 2018).
- Horschig, T.; Billig, E.; Majer, S.; Thrän, D. Biomethane—local energy carrier or European commodity? In The European Dimension of Germany’s Energy Transition—Opportunities and Conflicts; Gawel, E., Strunz, S., Lehmann, P., Purkus, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Thrän, D.; Billig, E.; Persson, T.; Svensson, M.; Daniel-Gromke, J.; Ponitka, J.; Seiffert, M. Biomethane—Status and Factors Affecting Market Development and trade. IEA Task 40 and Task 37 Joint Study; IEA Bioenergy: Paris, France, 2014; ISBN 978-1-910154-10-6. [Google Scholar]
- Members of IEA Bioenergy Task 37. IEA Bioenergy Task 37—Country Reports Summary 2017; IEA Bioenergy: Paris, France, 2018; ISBN 978-1-910154-50-2. [Google Scholar]
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. (Eds.) Energie aus Biomasse; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-662-47437-2. [Google Scholar]
- Thrän, D. (Ed.) Smart Bioenergy. Technologies and Concepts for a More Flexible Bioenergy Provision in Future Energy Systems; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-16192-1. [Google Scholar]
- Bauen, A.; Berndes, G.; Junginger, M.; Mozaffarian, H. Bioenergy—A Sustainable and Reliable Energy Source. A Review of Status and Prospects; Main Report; IEA Bioenergy: Paris, France, 2009; Available online: https://infoscience.epfl.ch/record/219072/files/MAIN-REPORT-Bioenergy-a-sustainable-and-reliable-energy-source.-A-review-of-status-and-prospects.pdf (accessed on 27 June 2018).
- Clancy, J.M.; Curtis, J.; Ó’Gallachóir, B. Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030—Interactions, impacts and conflicts. Energy Policy 2018, 123, 579–593. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap: Delivering Sustainable Bioenergy. Available online: https://www.ieabioenergy.com/wp-content/uploads/2017/11/Technology_Roadmap_Delivering_Sustainable_Bioenergy.pdf (accessed on 14 June 2018).
- IEA. HOWGUIDE 2forBioenergy: Roadmap Development and Implementation. Available online: https://www.iea.org/publications/freepublications/publication/How2GuideforBioenergyRoadmapDevelopmentandImplementation.pdf (accessed on 14 June 2018).
- Domac, J.; Richards, K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 97–106. [Google Scholar] [CrossRef]
- IEA Bioenergy Task 37. Upgrading Plant List 2017. 2017. Available online: http://task37.ieabioenergy.com/plant-list.html (accessed on 20 November 2018).
- IEA Bioenergy Task 37. Upgrading Plant List 2014. 2014. Available online: http://task37.ieabioenergy.com/plant-list.html (accessed on 14 June 2018).
- RNG Coalition. RNG Production Facilities in North America. Available online: https://docs.google.com/spreadsheets/d/1CpLTd1Yya4qQzUpWYtKMUGW1BlMmn-Jrj3uErd8lJ7A/edit#gid=0=0 (accessed on 21 November 2018).
- Jing, F. 4.2 the Chinese Agricultural Biogas Sector—Current Challenges and Future Perspectives. In Energetic Utilization of Agricultural Residues in China and Germany, 1st ed.; How to foster the utilization of agricultural residues in the biogas sector in China; DBFZ: Leipzig, Germany, 2017; pp. 13–24. [Google Scholar]
- OECD/IEA. Renewables Information. Available online: https://www.oecd-ilibrary.org/docserver/renew-2018-en.pdf?expires=1544969913&id=id&accname=oid018224&checksum=36CB587F810C790189921CFE25432680 (accessed on 16 December 2018).
- German Chambers of Commerce Abroad: Brazil. Zielmarktanalyse Biogas Brasilien. Energetische Nutzung von Landwirtschaftsabfällen, mit Profilen der Marktakteure. 2016. Available online: https://www.erneuerbare-energien.de/EEE/Redaktion/DE/Downloads/Publikationen/AHK_Zielmarktanalysen/zma_brasilien_2016_bio.pdf?__blob=publicationFile&v=3 (accessed on 31 July 2018).
- Gardemann, A. Brazilian Association of Biogas and Biomethane. Available online: http://www.iee.usp.br/gbio/sites/default/files/Alessandro%20Gardemann.pdf (accessed on 7 November 2018).
- Abboud, S.; Aschim, K.; Bagdan, B.; Sarkar, P.; Yuan, H.; Scorfield, B.; Felske, C.; Rahbar, S.; Marmen, L. Potential Production of Methane from Canadian Wastes. 2010. Available online: https://www.researchgate.net/publication/268341359_Potential_Production_of_Methane_from_Canadian_Wastes (accessed on 21 November 2018).
- Scott, W. Low Carbon Fuel Standards in Canada: Policy Brief. Available online: http://institute.smartprosperity.ca/sites/default/files/lowcarbonfuelstandards-web.pdf (accessed on 21 November 2018).
- Ministry of Energy Mines Petroleum Resources British Columbia. Renewable and Low Carbon Fuel Requirements Regulation. Summary for 2010–2016: Information Bulletin RLCF-007-2016. 2017. Available online: https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/electricity-alternative-energy/transportation/renewable-low-carbon-fuels/rlcf-007-2016.pdf (accessed on 30 July 2018).
- Government of British Columbia. B.C.’s Climate Leadership Plan to Cut Emissions While Growing the Economy. B.C.’s Climate Leadership Plan at a Glance: Backgrounders. 2016. Available online: https://news.gov.bc.ca/releases/2016PREM0089-001501 (accessed on 30 July 2018).
- Canadian Biogas Association. Renewable Natural Gas Developments in Ontario. An Evolving Outlook. 2017. Available online: https://biogasassociation.ca/resources/rng_outreach_and_market_development (accessed on 21 November 2018).
- Enbridge Gas Distribution Inc.; Uniongas. Supporting Renewable Natural Gas in Ontario. Value of Biogas EAST. 2018. Available online: https://www.biogasassociation.ca/images/uploads/documents/2018/vob_east_presentations/2018VOB-Mar22-4-Evers-and-Welburn.pdf (accessed on 8 October 2019).
- Canadian Biogas Association. Farm to Fuel. Developers’ Guide to Biomethane. 2012. Available online: https://biogasassociation.ca/images/uploads/documents/2012/reports/Developers_Guide_to_Biomethane.pdf (accessed on 21 November 2018).
- Jingming, L. 4.11 Manure management and biogas plantsLeipzig, Germany—The operational and technical challenge in China: Opportunity and Challenge of Biogas Sector in China. In Energetic Utilization of Agricultural Residues in China and Germany, 1st ed.; How to foster the utilization of agricultural residues in the biogas sector in China; DBFZ: Leipzig, Germany, 2017; pp. 87–98. [Google Scholar]
- Liu, C.; Wang, J.; Ji, X.; Qian, H.; Huang, L.; Lu, X. The biomethane producing potential in China: A theoretical and practical estimation. Chin. J. Chem. Eng. 2016, 24, 920–928. [Google Scholar] [CrossRef]
- Arteconi, A.; Spitoni, M.; Polonara, F.; Spigarelli, F. The feasibility of liquefied biomethane as alternative fuel: A comparison between European and Chinese markets. Int. J. Ambient Energy 2016, 38, 481–488. [Google Scholar] [CrossRef]
- Ministry of Economy Trade and Industry Japan. Long-Term Energy Supply and Demand Outlook. Available online: http://www.meti.go.jp/english/press/2015/pdf/0716_01a.pdf (accessed on 21 November 2018).
- Bacovsky, D.; Ludwiczek, N.; Christian, P.; Kumar Verma, V. IEA Bioenergy Countries’ Report. Bioenergy Policies and Status of Implementation. 2016. Available online: http://www.ieabioenergy.com/publications/iea-bioenergy-countries-report-23-09-2016/ (accessed on 16 July 2018).
- IEA. Energy Balances of OECD Countries 2015; OECD Publishing International Energy Agency: Paris, France, 2015; ISBN 978-92-64-23594-6. [Google Scholar]
- German Industry & Commerce Chamber Japan. ZIELMARKTANALYSE JAPAN 2017. Biomasse und Biogas mit Profilen der Marktakteure. 2017. Available online: https://www.oav.de/fileadmin/user_upload/ZMA_Bioenergie_in_Japan_2017_FINAL.PDF (accessed on 21 November 2018).
- Yokoyama, S.; Matsumura, Y. The Present Status and Future Scope of Bioenergy in Japan. J. Jpn. Inst. Energy 2015, 94, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Lybæk, R.; Asai, M. Future pathways for deploying agricultural based biogas plants in Denmark and Japan: A comparative analysis. GMSARN Int. J. 2017, 11, 126–138. [Google Scholar]
- Aikawa, T. Restructuring Japan’s Bioenergy Strategy: Towards Realizing Its True Potential. Available online: https://www.renewable-ei.org/en/activities/reports/img/pdf/20180628_01/REI_Bioenerg Strategy _EN _180628.pdf (accessed on 22 November 2018).
- Hamdan, R.A. Tapping into the Transportation Fuel Market. 2013. Available online: https://www.globalmethane.org/expo-docs/canada13/biogas_03_Hamdan_CNG.pdf (accessed on 14 August 2018).
- Du Plessis, L. Japan’s Biomass Market Overview. Available online: https://www.jetro.go.jp/ext_images/_Events/ldn/Japan_biomass_market_overview.pdf (accessed on 21 November 2018).
- Elliot, J.; Bartos, J.; Lopez-Bassols, C.; Nishida, Y.; Robertson, A. Energy Supply Security. Emergency Response of IEA Countries 2014. 2014. Available online: https://www.oecd-ilibrary.org/docserver/9789264218420-en.pdf?expires=1533543434&id=id&accname=oid018224&checksum=460F67A9E33C9F29A1F9F358581FA9B2 (accessed on 3 August 2018).
- German Chambers of Commerce Abroad: South Korea. Zielmarktanalyse Südkorea 2016. biogasanlagen und—Technologie Sowie Anlagen für Bio-Diesel. 2016. Available online: https://www.erneuerbare-energien.de/EEE/Redaktion/DE/Downloads/Publikationen/AHK_Zielmarktanalysen/zma_suedkorea_2016_bio.pdf?__blob=publicationFile&v=2 (accessed on 21 November 2018).
- Jo, J.H.; Kim, W. Market potential of biomethane as alternative transportation fuel in South Korea. J. Mater. Cycles Waste Manag. 2018, 20, 864–876. [Google Scholar] [CrossRef]
- Escudero, J.D. Challenges & Opportunities for Increased Production of Renewable Natural Gas (RNG). Session 2: Policy & Market Overview. 2018. Available online: https://www.epa.gov/natural-gas-star-program/renewable-natural-gas-driving-value-natural-gas-and-biogas-sectors-workshop (accessed on 20 November 2018).
- Williams, E. Commercial Landfill Gas Energy Projects. Opportunities & Barriers. 2017. Available online: https://www.epa.gov/lmop/2017-national-landfill-gas-energy-special-session (accessed on 28 July 2018).
- American Biogas Council. ABC RNG Purity Recommendation. Available online: https://www.americanbiogascouncil.org/biogas_purityspecs.asp (accessed on 21 November 2018).
- American Biogas Council. Biogas State Profiles. Available online: https://www.americanbiogascouncil.org/stateprofiles.asp (accessed on 21 November 2018).
- Fraunhofer IWES; Fraunhofer UMSICHT; DBFZ. BIOMON—Evaluierung der Biomethanbereitstellung, -Verteilung und -Nutzung in Deutschland durch ein Marktmonitoring; Fraunhofer Umsicht: Oberhausen, Germany, 2012. [Google Scholar]
- German Energy Agency (DENA). Branchenbarometer Biomethan. 2016. Available online: http://www.biogaspartner.de/fileadmin/biogas/documents/Branchenbarometer/Factsheet_Biomethan_2016.pdf (accessed on 19 June 2018).
- German Energy Agency (DENA). Biogaspartner—Gemeinsam Einspeisen. Biogaseinspeisung und -Nutzung in Deutschland und Europa Markt, Technik und Akteure; German Energy Agency (DENA): Berlin, Germany, 2017. [Google Scholar]
- State Parliament Baden-Württemberg. Renewable Heat Law: “Gesetz zur Nutzung erneuerbarer Wärmeenergie in Baden-Württemberg (Erneuerbare-Wärme-Gesetz)”. EWärmeG. 2015. Available online: https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/5_Energie/Energieeffizienz/EWaermeG_BW/150317_Novelle_Erneuerbare_Waerme-Gesetz.pdf (accessed on 15 August 2018).
- Lukehurst, C.; ADBA. IEA Bioenergy Task 37. UK Country Report. 2017. Available online: http://task37.ieabioenergy.com/country-reports.html (accessed on 13 July 2018).
- Maggioni, L.; Pieroni, C. Report on the Biomethane Injection into National Gas Grid. Available online: http://www.isaac-project.it/wp-content/uploads/2017/07/D5.2-Report-on-the-biomethane-injection-into-national-gas-grid.pdf (accessed on 7 November 2018).
- Department of Energy & Climate Change UK. Non-Domestic Renewable Heat Incentive (RHI) Biomass & Biomethane Sustainability. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/403106/Non-domestic_RHI_-_Biomass_and_Biomethane_Sustainability_Feb15_Final.pdf (accessed on 7 November 2018).
- Record Biomap Project. Regulatory Framework for Biomethane Supply in UK. Available online: https://biomethane-map.eu/fileadmin/country_profile_regulatory_framework/Framework_mapping_-_UK_website.pdf (accessed on 7 November 18).
- Record Biomap Project. Regulatory Framework for Biomethane Supply in Sweden. Available online: https://biomethane-map.eu/fileadmin/country_profile_regulatory_framework/Framework_mapping_-_Sweden_website.pdf (accessed on 7 November 2016).
- Svensson, M. Challenges and Opportunities for the Future Biomethane Powered Automotive Market; Gent; 2016. Available online: www.european-biogas.eu (accessed on 2 May 2019).
- Svensson, M. IEA Bioenergy Task 37. Country Report Sweden. 2016. Available online: http://task37.ieabioenergy.com/country-reports.html (accessed on 20 June 2018).
- Energetic Utilization of Agricultural Residues in China and Germany, 1st ed.; How to foster the utilization of agricultural residues in the biogas sector in China; DBFZ Deutsches Biomasseforschungszentrum: Leipzig, Germany, 2017.
- Turley, D. Sustainability Considerations. 2018. Available online: https://www.nnfcc.co.uk/ (accessed on 20 November 2018).
- Canadian Gas Association. Renewable Natural Gas: Technology Roadmap for Canada. Available online: http://www.cga.ca/natural-gas-markets/renewable-natural-gas/ (accessed on 21 November 2018).
- Raninger, B.; Zhou, H. Biogas from Landfills or Anaerobic Digestion Plants in China: Comparison for Biomass Wastes in China. Available online: http://www.vivis.de/phocadownload/Download/2012_wm/2012_WM_579_590_Raninger.pdf (accessed on 21 November 2018).
- Qian, M. Biogas Policy and Technology. 2018. Available online: https://www.oav.de/fileadmin/user_upload/2_Termine/Allgemein/biogas_development_in_China.pdf (accessed on 21 November 2018).
- Felizeter, B.; Schalit, V.; Peng, Q.; Chen, K. China—Effizienzsteigerung im Biogassektor in Nordchina. Zielmarktanalyse 2017 mit Profilen der Marktakteure. 2017. Available online: https://www.oav.de/fileadmin/user_upload/2_Termine/China_VR/cn_170707_ZMA_Biogas_2017_FINAL.pdf (accessed on 21 November 2018).
- Okamura, T.; Furukawa, M.; Ishitani, H. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A. Appl. Energy 2007, 84, 1136–1149. [Google Scholar] [CrossRef]
- Kang, H. IEA Bioenergy Task 37. South Korea Country Report; IEA Bioenergy: Paris, France, 2013. [Google Scholar]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Fuels and Lubricants TC 7 Fuels Committee. Recommended Practice for Compressed Natural Gas Vehicle Fuel, 3rd ed.; SAE International: Warrendale, PA, USA, 2017; Available online: https://www.sae.org/standards/content/j1616_201703/ (accessed on 21 November 2018).
- Serfass, P. A Snapshot of RNG and the Market. 2014. Available online: https://www.americanbiogascouncil.org/biogasProcessing/rngMarket_snapshot.pdf (accessed on 3 August 2018).
- U.S. Environmental Protection Agency. Renewable Fuel Standard Program: Overview for Renewable Fuel Standard. Available online: https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard (accessed on 21 November 2018).
- RNG Coalition. Low Carbon Fuel Standards. Federal & State Policies. 2018. Available online: http://www.rngcoalition.com/policies-legislation-1/ (accessed on 30 July 2018).
- RNG Coalition. Renewable Portfolio Standard: Federal & State Policies. Available online: http://www.rngcoalition.com/policies-legislation-1-1/ (accessed on 21 November 2018).
- Qian, M. Opportunity and Challange of Biogas Market in China. Available online: https://www.oav.de/fileadmin/user_upload/2_Termine/Allgemein/biogas_development_in_China.pdf (accessed on 20 November 2018).
- Thornley, P.; Cooper, D. The effectiveness of policy instruments in promoting bioenergy. Biomass Bioenergy 2008, 32, 903–913. [Google Scholar] [CrossRef]
- Fachagentur Nachwachsende Rohstoffe e. V. (FNR). Factors Influencing the Bioenergy Development. Available online: http://www.bio-prom.net/index.php?id=10369&L=2 (accessed on 1 July 2019).
- Madlener, R. Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria. Energy Policy 2007, 35, 1992–2008. [Google Scholar] [CrossRef]
- Findeisen, C. Biomethane in Developing and Emerging Countries. 2017. Available online: http://www.biosurf.eu/wordpress/wp-content/uploads/2015/06/170322_Findeisen_-Biomethane-in-Developing-Countries.pdf (accessed on 6 August 2018).
- Ansori Nasution, M. Bio-Methane Fuelled Palm Oil Operations Opportunities and Challenges Indonesia Perspective. 2015. Available online: https://www.researchgate.net/profile/Muhammad_Nasution/publication/285583078_BIO-METHANE_FUELED_PALM_OIL_OPERATIONS_OPPORTUNITIES_AND_CHALLENGES_Indonesia_perspective/links/56600dd108ae4988a7bf00d5/BIO-METHANE-FUELED-PALM-OIL-OPERATIONS-OPPORTUNITIES-AND-CHALLENGES-Indonesia-perspective.pdf (accessed on 27 June 2018).
- Voigt, T.; Amado, G. Kolumbien Dezentrale Energieversorgung in Kolumbien (Bio-, Wind-, Solarenergie). Zielmarktanalyse 2018 mit Profilen der Marktakteure. 2018. Available online: https://www.german-energy-solutions.de/GES/Redaktion/DE/Publikationen/Marktanalysen/2018/zma_kolumbien_2018_dezentrale-energieversorgung.html (accessed on 13 August 2018).
- Schaubach, K.; Brosowski, A.; Shah, A. Assessment of the Status Quo of the Implementation and Potentials of Anaerobic Digestion in Indi. Final Report; DeutschesBiomasseforschungszentrum: Leipzig, Germany, 2018. [Google Scholar]
- Hoo, P.Y.; Patrizio, P.; Leduc, S.; Hashim, H.; Kraxner, F.; Tan, S.T.; Ho, W.S. Optimal Biomethane Injection into Natural Gas Grid—Biogas from Palm Oil Mill Effluent (POME) in Malaysia. Energy Procedia 2017, 105, 562–569. [Google Scholar] [CrossRef]
- Pasupathy, R. The 3rd Annual Biogas Forum. In Biogas Directory, 2nd ed.; ICESN - International Clean Energy and Sustainability Network: Singapore, 2015; pp. 49–55. Available online: http://apacbiogas.org/publications/ (accessed on 27 June 2018).
- Giok Seng, L. Official Launching of the First Commercial BioCNG (Biomethane) Plant in Malaysia. Available online: http://www.angva.org/wp-content/uploads/Report-BioCNG-Plant-Malaysia_281015.pdf (accessed on 13 August 2018).
- German-Thai Chamber of Commerce. Thailand Biogas: Zielmarktanalyse 2019 mit Profilen der Marktakteure. Available online: https://german-energy-solutions.de/GES/Redaktion/DE/Publikationen/Marktanalysen/2019/zma_thailand-bioenergie-2019.pdf?__blob=publicationFile&v=2 (accessed on 10 February 2019).
- Thrän, D.; Schaubach, K.; Peetz, D.; Junginger, M.; Mai-Moulin, T.; Schipfer, F.; Olsson, O.; Lamers, P. The dynamics of the global wood pellet markets and trade—key regions, developments and impact factors. Biofuels Bioprod. Bioref. 2019, 13, 267–280. [Google Scholar] [CrossRef]
Country | Number of Upgrading Plants 2017 | Total Biomethane Feed-In Capacity in 2017 [m3/h] |
---|---|---|
Germany | 194 | >165,074 |
United Kingdom | 85 | >60,770 |
Sweden | 63 | >14,620 |
Switzerland 1 | 31 | >3333 |
France | 30 | >4387 |
Netherlands | 26 | 14,212 |
Denmark | 22 | >7109 |
Austria | 15 | >2685 |
Finland | 12 | >1507 |
Norway | 4 | >1275 |
Italy | 7 | No Information |
Luxembourg | 3 | 680 |
Hungary | 2 | 800 |
Iceland | 2 | 550 |
Spain | 1 | 6500 |
Country | Number and Total Capacity of Upgrading Plants in 2014 | Number and Total Capacity of Upgrading Plants (Most Recent Data) | |||
---|---|---|---|---|---|
Number | Upgrading Capacity (Nm3 Raw Gas/h) | Number | Upgrading Capacity (Nm3 Raw Gas/h) | Year | |
United States of America | 50 | >90,000 | 77 | No Information | 2018 |
China | 2 | ~2000 | 73 | No Information | 2017 |
South Korea | 6 | ~4000 | 10 | ~6000 | 2017 |
Canada | 4 | >1200 | 9 | No Information | 2018 |
Japan | 6 | ~2400 | 6 | ~2400 | 2014 |
Brazil | 4 | >700 | 5 | <1000 | 2017 |
Criteria | Germany | United Kingdom | Sweden | Brazil | Canada | China | Japan | South Korea | United States | |
---|---|---|---|---|---|---|---|---|---|---|
Stakeholder and Resource Criteria | ||||||||||
Resource Assessment (Identification of Biomethane Potentials) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Biomethane Associations/Organisations | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Inventory Framework Criteria | ||||||||||
National Incentive or Subsidy Programmes for | Electricity Production with Biomethane | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Heat Production with Biomethane | ✓ | ✓ | ✓ | |||||||
Utilisation of Biomethane as Transport Fuel | ✓ | ✓ | ✓ | ✓ | ||||||
Construction and/or Operation of Biomethane Plants (Investment Grants/Loans, Tax Reductions) | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Other Support programmes National Level | ✓ | ✓ | ✓ | ✓ | ||||||
State-Level Incentive or Subsidy Programmes for | Electricity Production with Biomethane | ✓ | ✓ | |||||||
Heat Production with Biomethane | ✓ | ✓ | ||||||||
Utilisation of Biomethane as Transport Fuel | ✓ | ✓ | ||||||||
Other Support programmes State-Level | ✓ | ✓ | ||||||||
Regulatory Framework Criteria | ||||||||||
Consistent National Quality Standard for | Grid Injection | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Use as vehicle fuel | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Further National Regulations for a Biomethane Market Framework | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Market Development Criteria | ||||||||||
Pilot/Demonstration Projects | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Commercial Projects | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
More than 10 Commercial Projects | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Increasing Number of Commercial Projects in the last 5 Years | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Utilisation Pathway Criteria | ||||||||||
Major Distribution Pathway | Gas Grid | ✓ | ✓ | n.d. | ✓ | n.d. | n.d. | n.d. | ✓ | |
Road, Rail, Shipping | ✓ | |||||||||
Major Utilisation | Electricity | ✓ | ✓ | |||||||
Heat | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Mobility | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Sustainability Criterion | ||||||||||
Primary Type of Feedstock | Energy Crops | ✓ | ||||||||
Residues & Wastes | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Key | ✓ = Available; n.d. = No data found |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmid, C.; Horschig, T.; Pfeiffer, A.; Szarka, N.; Thrän, D. Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies 2019, 12, 3803. https://doi.org/10.3390/en12193803
Schmid C, Horschig T, Pfeiffer A, Szarka N, Thrän D. Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies. 2019; 12(19):3803. https://doi.org/10.3390/en12193803
Chicago/Turabian StyleSchmid, Christopher, Thomas Horschig, Alexandra Pfeiffer, Nora Szarka, and Daniela Thrän. 2019. "Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries" Energies 12, no. 19: 3803. https://doi.org/10.3390/en12193803
APA StyleSchmid, C., Horschig, T., Pfeiffer, A., Szarka, N., & Thrän, D. (2019). Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies, 12(19), 3803. https://doi.org/10.3390/en12193803