A Prediction Model for Methane Adsorption Capacity in Shale Gas Reservoirs
Abstract
:1. Introduction
2. Materials
3. Results and Discussion
3.1. Model of Langmuir Volume at Experimental Temperature
3.2. Model of Langmuir Volume at Reservoir Temperature
3.3. Model of Langmuir Pressure at Experimental Temperature and Reservoir Temperature
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Source | TOC (wt %) | Clay (%) | T (°C) | Mesh | VL (scf/ton) | PL(psi) | Tmax (°C) | Decrease Rate of VL |
---|---|---|---|---|---|---|---|---|
Wang, Zhu [18] | 7.68 | 35.4 | 30 | 60 | 152.9 | 337.9 | N/A | N/A |
4.24 | 34.8 | 30 | 60 | 126.4 | 346.6 | N/A | N/A | |
2.18 | 37.8 | 30 | 60 | 77.3 | 378.5 | N/A | N/A | |
1.46 | 48.7 | 30 | 60 | 60.4 | 287.2 | N/A | N/A | |
5.23 | 34.1 | 30 | 60 | 74.9 | 688.9 | N/A | N/A | |
4.82 | 38.5 | 30 | 60 | 95.3 | 455.4 | N/A | N/A | |
1.76 | 36.1 | 30 | 60 | 42.7 | 507.6 | N/A | N/A | |
8.54 | 29.3 | 30 | 60 | 108.4 | 632.4 | N/A | N/A | |
10.02 | 37.4 | 30 | 60 | 117.6 | 551.1 | N/A | N/A | |
2.17 | 27.2 | 30 | 60 | 18.4 | 103.0 | N/A | N/A | |
4.4 | 20.1 | 30 | 60 | 34.3 | 101.5 | N/A | N/A | |
3.9 | 28.7 | 30 | 60 | 32.8 | 210.3 | N/A | N/A | |
Our unpublished data | 0.28 | 76.58 | 25 | 60 | 87.7 | 296.1 | 442 | N/A |
0.52 | N/A | 25 | 60 | 40.0 | 281.9 | 453 | N/A | |
1.26 | 83.49 | 25 | 60 | 87.7 | 331.3 | 454 | N/A | |
3.2 | 74.28 | 25 | 60 | 89.3 | 372.4 | 454 | N/A | |
2.82 | 67.52 | 25 | 60 | 80.6 | 338.2 | 456 | N/A | |
2.6 | 54.90 | 25 | 60 | 80.0 | 420.2 | 453 | N/A | |
2.11 | 54.22 | 25 | 60 | 86.2 | 458.3 | 441 | N/A | |
1.24 | 37.10 | 25 | 60 | 42.6 | 317.1 | 453 | N/A | |
2.76 | 55.97 | 25 | 60 | 82.6 | 455.6 | 448 | N/A | |
0.75 | 68.44 | 25 | 60 | 69.0 | 372.5 | 458 | N/A | |
Guo, Lü [19] | 0.5 | 26 | 30 | 60-80 | 26.1 | 233.5 | 589 | N/A |
0.95 | 40 | 30 | 60-80 | 35.0 | 313.3 | 475 | N/A | |
0.81 | 42 | 30 | 60-80 | 27.5 | 358.2 | 533 | N/A | |
0.76 | 41 | 30 | 60-80 | 28.3 | 243.7 | 477 | N/A | |
1.05 | 46 | 30 | 60-80 | 51.6 | 407.6 | 444 | N/A | |
0.7 | 42 | 30 | 60-80 | 33.9 | 384.4 | 424 | N/A | |
0.98 | 45 | 30 | 60-80 | 36.0 | 522.1 | 574 | N/A | |
1.3 | 47 | 30 | 60-80 | 51.6 | 384.4 | 460 | N/A | |
5.76 | 55 | 30 | 60-80 | 166.3 | 742.6 | 458 | N/A | |
1.55 | 60 | 30 | 60-80 | 84.4 | 509.1 | 455 | N/A | |
0.87 | 33 | 30 | 60-80 | 31.1 | 298.8 | 494 | N/A | |
2.24 | 48 | 30 | 60-80 | 62.5 | 375.6 | 442 | N/A | |
2.57 | 49 | 30 | 60-80 | 75.9 | 265.4 | 442 | N/A | |
1.22 | 36 | 30 | 60-80 | 41.0 | 264.0 | 474 | N/A | |
2.42 | 43 | 30 | 60-80 | 73.5 | 340.8 | 441 | N/A | |
2.47 | 43 | 30 | 60-80 | 96.4 | 385.8 | 463 | N/A | |
5.35 | 70 | 30 | 60-80 | 163.1 | 481.5 | 447 | N/A | |
5.33 | 70 | 30 | 60-80 | 142.0 | 465.6 | 453 | N/A | |
4.59 | 60 | 30 | 60-80 | 108.4 | 319.1 | 452 | N/A | |
1.55 | 55 | 30 | 60-80 | 55.1 | 295.9 | 469 | N/A | |
1.48 | 36 | 30 | 60-80 | 57.6 | 446.7 | 462 | N/A | |
25.31 | 23 | 30 | 60-80 | 427.6 | 467.0 | 501 | N/A | |
2.39 | 36 | 30 | 60-80 | 59.0 | 423.5 | 460 | N/A | |
24.58 | 68 | 30 | 60-80 | 266.6 | 480.1 | 424 | N/A | |
1.02 | 58 | 30 | 60-80 | 39.6 | 319.1 | 571 | N/A | |
1.17 | 35 | 30 | 60-80 | 43.1 | 449.6 | 434 | N/A | |
1.38 | 57 | 30 | 60-80 | 43.8 | 224.8 | 492 | N/A | |
1.62 | 52 | 30 | 60-80 | 53.0 | 239.3 | 444 | N/A | |
28.48 | 35 | 30 | 60-80 | 478.5 | 564.2 | 436 | N/A | |
[16,17] | 1.41 | N/A | 20 | 60 | 93.9 | 195.8 | N/A | 0.3778 |
N/A | 40 | 60 | 85.5 | 220.5 | N/A | |||
N/A | 60 | 60 | 84.0 | 380.0 | N/A | |||
N/A | 80 | 60 | 73.5 | 433.7 | N/A | |||
N/A | 100 | 60 | 62.2 | 475.7 | N/A | |||
4.13 | N/A | 20 | 60 | 135.6 | 207.4 | N/A | 0.452 | |
N/A | 40 | 60 | 128.9 | 220.5 | N/A | |||
N/A | 60 | 60 | 119.7 | 382.9 | N/A | |||
N/A | 80 | 60 | 109.8 | 422.1 | N/A | |||
N/A | 100 | 60 | 99.9 | 464.1 | N/A | |||
0.45 | N/A | 20 | 60 | 59.7 | 192.9 | N/A | 0.2066 | |
N/A | 40 | 60 | 54.4 | 223.4 | N/A | |||
N/A | 60 | 60 | 51.9 | 381.5 | N/A | |||
N/A | 80 | 60 | 47.0 | 427.9 | N/A | |||
N/A | 100 | 60 | 42.7 | 469.9 | N/A | |||
0.87 | N/A | 20 | 60 | 77.3 | 197.3 | N/A | 0.3337 | |
N/A | 40 | 60 | 71.7 | 224.8 | N/A | |||
N/A | 60 | 60 | 68.9 | 393.1 | N/A | |||
N/A | 80 | 60 | 57.9 | 420.6 | N/A | |||
N/A | 100 | 60 | 50.9 | 471.4 | N/A | |||
0.8 | N/A | 20 | 60 | 74.5 | 185.7 | N/A | 0.2966 | |
N/A | 40 | 60 | 71.0 | 221.9 | N/A | |||
N/A | 60 | 60 | 68.9 | 382.9 | N/A | |||
N/A | 80 | 60 | 61.8 | 435.1 | N/A | |||
N/A | 100 | 60 | 49.4 | 464.1 | N/A | |||
1.49 | N/A | 20 | 60 | 100.6 | 191.5 | N/A | 0.5279 | |
N/A | 40 | 60 | 98.2 | 227.7 | N/A | |||
N/A | 60 | 60 | 92.5 | 387.3 | N/A | |||
N/A | 80 | 60 | 74.5 | 438.0 | N/A | |||
N/A | 100 | 60 | 59.7 | 468.5 | N/A | |||
0.62 | N/A | 20 | 60 | 71.7 | 198.7 | N/A | 0.3655 | |
N/A | 40 | 60 | 66.4 | 219.0 | N/A | |||
N/A | 60 | 60 | 60.0 | 384.4 | N/A | |||
N/A | 80 | 60 | 54.0 | 436.6 | N/A | |||
N/A | 100 | 60 | 41.3 | 468.5 | N/A | |||
1.35 | N/A | 20 | 60 | 85.8 | 195.8 | N/A | 0.4379 | |
N/A | 40 | 60 | 80.5 | 217.6 | N/A | |||
N/A | 60 | 60 | 74.2 | 381.5 | N/A | |||
N/A | 80 | 60 | 64.3 | 427.9 | N/A | |||
N/A | 100 | 60 | 50.1 | 449.6 | N/A | |||
5.15 | N/A | 30 | 60 | 216.8 | 207.4 | N/A | 1.8362 | |
N/A | 40 | 60 | 202.7 | 216.1 | N/A | |||
N/A | 50 | 60 | 184.7 | 307.5 | N/A | |||
N/A | 60 | 60 | 159.6 | 388.7 | N/A | |||
N/A | 70 | 60 | 146.6 | 419.2 | N/A | |||
4.76 | N/A | 30 | 60 | 205.9 | 206.0 | N/A | 2.8497 | |
N/A | 40 | 60 | 184.7 | 214.7 | N/A | |||
N/A | 50 | 60 | 140.9 | 248.0 | N/A | |||
N/A | 60 | 60 | 111.6 | 298.8 | N/A | |||
N/A | 70 | 60 | 99.9 | 320.5 | N/A | |||
[14] | 3.03 | 51.3 | 25 | 60 | 51.3 | 218.9 | 459 | 0.3135 |
45 | 60 | 46.3 | 277.8 | |||||
60 | 60 | 40.2 | 346.9 | |||||
80 | 60 | 37.6 | 433.8 | |||||
0.64 | 26 | 25 | 60 | 26.0 | 256.1 | 458 | 0.1538 | |
45 | 60 | 23.1 | 306.7 | |||||
60 | 60 | 20.6 | 322.5 | |||||
80 | 60 | 19.8 | 429.2 | |||||
1.82 | 46.5 | 25 | 60 | 46.5 | 263.8 | 460 | 0.5846 | |
45 | 60 | 35.2 | 352.3 | |||||
60 | 60 | 26.0 | 492.2 | |||||
80 | 60 | N/A | N/A | |||||
1.08 | 34.2 | 25 | 60 | 34.2 | 422.1 | 465 | 0.337 | |
45 | 60 | 29.5 | 544.6 | |||||
60 | 60 | 22.2 | 562.0 | |||||
80 | 60 | 20.5 | 729.7 | |||||
0.23 | 26.5 | 25 | 60 | 26.5 | 383.5 | N/A | 0.1257 | |
45 | 60 | 24.0 | 398.3 | |||||
60 | 60 | 22.1 | 445.3 | |||||
80 | 60 | 20.7 | 505.4 | |||||
3.07 | 76 | 25 | 60 | 80.6 | 338.2 | 452 | 0.8646 | |
45 | 60 | 63.7 | 371.7 | |||||
60 | 60 | 50.3 | 481.4 | |||||
80 | 60 | N/A | N/A |
References
- Curtis, J.B. Fractured Shale-Gas Systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Chalmers, G.R.L.; Bustin, R.M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. Int. J. Coal Geol. 2007, 70, 223–239. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Langmuir, I. The evaporation, condensation and reflection of molecules and the mechanism of adsorption. J. Frankl. Inst. 1917, 183, 101–102. [Google Scholar] [CrossRef]
- Gasparik, M.; Bertier, P.; Gensterblum, Y.; Ghanizadeh, A.; Krooss, B.M.; Littke, R. Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol. 2014, 123, 34–51. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, T.; Milliken, K.L.; Qu, J.; Zhang, X. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 2012, 27, 2533–2545. [Google Scholar] [CrossRef]
- Guo, S. Experimental study on isothermal adsorption of methane gas on three shale samples from Upper Paleozoic strata of the Ordos Basin. J. Pet. Sci. Eng. 2013, 110, 132–138. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Lewan, M.; Sun, X. Effect of Organic Matter Properties, Clay Mineral Type and Thermal Maturity on Gas Adsorption in Organic-Rich Shale Systems. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013. [Google Scholar]
- Dang, W.; Zhang, J.; Wei, X.; Tang, X.; Chen, Q.; Li, Z.; Zhang, M.; Liu, J. Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the Southern North China Basin, Central China: Experimental results and geological implications. J. Pet. Sci. Eng. 2017, 152, 456–470. [Google Scholar] [CrossRef]
- Myers, A.L. Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules. Colloids Surfaces A Physicochem. Eng. Asp. 2004, 241, 9–14. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Li, T.; Tian, H.; Xiao, X.; Cheng, P.; Zhou, Q.; Wei, Q. Geochemical characterization and methane adsorption capacity of overmature organic-rich Lower Cambrian shales in northeast Guizhou region, southwest China. Mar. Pet. Geol. 2017, 86, 858–873. [Google Scholar] [CrossRef]
- Liu, Y.C.; Chen, D.X.; Qiu, N.S.; Wang, Y.; Fu, J.; Huyan, Y.; Jia, J.K.; Wu, H. Reservoir characteristics and methane adsorption capacity of the Upper Triassic continental shale in Western Sichuan Depression, China. Aust. J. Earth Sci. 2017, 64, 807–823. [Google Scholar] [CrossRef]
- Zou, J.; Rezaee, R.; Liu, K. The effect of temperature on methane adsorption in shale gas reservoirs. Energy Fuels 2017. [Google Scholar] [CrossRef]
- Gasparik, M.; Rexer, T.F.T.; Aplin, A.C.; Billemont, P.; De Weireld, G.; Gensterblum, Y.; Henry, M.; Krooss, B.M.; Liu, S.; Ma, X.; et al. First international inter-laboratory comparison of high-pressure CH4, CO2 and C2H6 sorption isotherms on carbonaceous shales. Int. J. Coal Geol. 2014, 132, 131–146. [Google Scholar] [CrossRef]
- Ji, W.; Song, Y.; Jiang, Z.; Wang, X.; Bai, Y.; Xing, J. Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin, China. Int. J. Coal Geol. 2014, 134–135, 61–73. [Google Scholar] [CrossRef]
- Ji, W.; Song, Y.; Jiang, Z.; Chen, L.; Li, Z.; Yang, X.; Meng, M. Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China. Mar. Pet. Geol. 2015, 68, Part A. 94–106. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Liu, S.; Zhang, R. Methane adsorption measurements and modeling for organic-rich marine shale samples. Fuel 2016, 172, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Lü, X.; Song, X.; Liu, Y. Methane adsorption characteristics and influence factors of Mesozoic shales in the Kuqa Depression, Tarim Basin, China. J. Pet. Sci. Eng. 2017, 157, 187–195. [Google Scholar] [CrossRef]
- Fan, E.; Tang, S.; Zhang, C.; Guo, Q.; Sun, C. Methane sorption capacity of organics and clays in high-over matured shale-gas systems. Energy Explor. Exploit. 2015, 32, 16. [Google Scholar] [CrossRef]
- Xia, X.; Litvinov, S.; Muhler, M. Consistent Approach to Adsorption Thermodynamics on Heterogeneous Surfaces Using Different Empirical Energy Distribution Models. Langmuir 2006, 22, 8063–8070. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, X.; Li, Y.; Wu, K.; Shi, J.; Yang, L.; Feng, D.; Zhang, T.; Yu, P. Water distribution characteristic and effect on methane adsorption capacity in shale clay. Int. J. Coal Geol. 2016, 159, 135–154. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Q. The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China. J. Hydrol. 2016, 542, 487–505. [Google Scholar] [CrossRef]
- Zou, J.; Rezaee, R.; Xie, Q.; You, L.; Liu, K.; Saeedi, A. Investigation of moisture effect on methane adsorption capacity of shale samples. Fuel 2018, 232, 323–332. [Google Scholar] [CrossRef]
References | Considered Factors of Langmuir Volume | Considered Factors of Langmuir Pressure |
---|---|---|
Zhang, Ellis [11] | TOC | temperature and thermal maturity |
Liu, Chen [13] | TOC and clay content | temperature |
Li, Tian [12] | TOC, clay content, temperature and residual of hydrocarbon (s1) | the content of clay minerals, illite, feldspar, and carbonate minerals |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Rezaee, R. A Prediction Model for Methane Adsorption Capacity in Shale Gas Reservoirs. Energies 2019, 12, 280. https://doi.org/10.3390/en12020280
Zou J, Rezaee R. A Prediction Model for Methane Adsorption Capacity in Shale Gas Reservoirs. Energies. 2019; 12(2):280. https://doi.org/10.3390/en12020280
Chicago/Turabian StyleZou, Jie, and Reza Rezaee. 2019. "A Prediction Model for Methane Adsorption Capacity in Shale Gas Reservoirs" Energies 12, no. 2: 280. https://doi.org/10.3390/en12020280
APA StyleZou, J., & Rezaee, R. (2019). A Prediction Model for Methane Adsorption Capacity in Shale Gas Reservoirs. Energies, 12(2), 280. https://doi.org/10.3390/en12020280