Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC
Abstract
:1. Introduction
2. Mathematical Model
- The two-phase flow is assumed transient, laminar, and an ideal gas.
- Effects of heat generation and heat transfer are not considered.
- The coefficient of surface tension amongst the two phases is constant.
- The bottom wall is assumed to be the GDL.
2.1. Governing Equations for the CLSVOF Two-Phase Model
2.2. Numerical Methodology
2.3. Computational Domain and Boundary Conditions
2.4. Grid Independence Test Analysis
3. Results and Discussion
3.1. Single-Phase Flow Characteristics of the Channels Under Investigation
3.2. Significance of Channel Architecture
3.3. Gas Inlet Velocity Effect
3.4. Droplet Interaction
3.5. Surface Wettability Effect
3.6. Droplet Size Effect
4. Conclusions
- The proposed hybrid sinusoidal flow channels have slightly improved water exhaust capacities, a higher gas velocity magnitude, and vertical component velocities. Design 2 hybrid configuration is recommended because of its excellent adaptability to different wall conditions and improved water exhaust capacity.
- The size of channel amplitude is one geometric parameter which significantly affects pressure drop, gas velocity magnitude, and average droplet speed. The velocity magnitude of the proposed hybrid sinusoidal designs (Designs 1, 2, and 3) is approximately 4.52%, 4.60%, and 10.17% higher than the straight channel, respectively. This implies that designers can choose different sizes based on expected cell performance.
- High inlet gas velocity is highly beneficial to droplet deformation, shear, and quicker discharge.
- Droplet coalescence and size quickens droplet deformation and discharge rate.
- Slightly hydrophilic channel walls facilitate quick and complete droplet detachment from the GDL surface; this would aid reactant transport to active reaction sites.
- The liquid water removal is significantly affected by the time the droplet touches the side wall: the earlier the contact time, the more prolonged the droplet residence inside the channel.
Author Contributions
Funding
Conflicts of Interest
References
- Song, Y.; Asadi, M.; Xie, G.; Rocha, L.A.O. Constructal wavy-fin channels of a compact heat exchanger with heat transfer rate maximization and pressure losses minimization. Appl. Therm. Eng. 2015, 75, 24–32. [Google Scholar] [CrossRef]
- Sui, Y.; Teo, C.J. Fluid flow and heat transfer in wavy microchannels. Int. J. Heat Mass Transf. 2010, 53, 2760–2772. [Google Scholar] [CrossRef]
- Xin, R.C.; Tao, W.Q. Numerical prediction of laminar flow and heat transfer in wavy channels of uniform cross-sectional area. Numer. Heat Trasnf. Part A Appl. 1988, 14, 465–481. [Google Scholar] [CrossRef]
- Chen, C.K.; Cho, C.C. A combined active/passive scheme for enhancing the mixing efficiency of microfluidic devices. Chem. Eng. Sci. 2008, 63, 3081–3087. [Google Scholar] [CrossRef]
- Hatami, M.; Safari, H. Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure. Int. J. Heat Mass Transf. 2016, 103, 1053–1057. [Google Scholar] [CrossRef]
- Leng, C.; Wang, X.D.; Yan, W.M.; Wang, T.H. Heat transfer enhancement of microchannel heat sink using transcritical carbon dioxide as the coolant. Energy Convers. Manag. 2016, 110, 154–164. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, J.; Lu, G.; Wang, X.D.; Yan, W.M. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude. Int. J. Therm. Sci. 2017, 118, 423–434. [Google Scholar] [CrossRef]
- Atyabi, S.A.; Afshari, E.A. numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields. J. Therm. Anal. Calorim. 2018, 135, 1823–1833. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, B.; Bao, Z.; Niu, Z.; Jiao, K. Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. Int. J. Energy Res. 2018, 42, 4697–4709. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Hartz, A.; Wang, K. Effects of geometry/dimensions of gas flow channels and operating conditions on high-temperature PEM fuel cells. Int. J. Energy Environ. Eng. 2015, 6, 75–89. [Google Scholar] [CrossRef]
- Zhang, G.; Jiao, K. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Convers. Manag. 2018, 176, 409–421. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R. Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method—A review. J. Power Sources 2015, 277, 329–342. [Google Scholar] [CrossRef]
- Akhtar, N.; Qureshi, A.; Scholta, J.; Hartnig, C.; Messerschmidt, M.; Lehnert, W. Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes. Int. J. Hydrogen Energy 2009, 34, 3104–3111. [Google Scholar] [CrossRef]
- Ibrahim-Rassoul, N.; Si-Ahmed, E.K.; Serir, A.; Kessi, A.; Legrand, J.; Djilali, N. Investigation of Two-Phase Flow in a Hydrophobic Fuel-Cell Micro-Channel. Energies 2019, 12, 2061. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, D.-Y.; Ou, C.-Q. Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Eng. Appl. Comput. Fluid Mech. 2011, 5, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Mularczyk, A.; Lamibrac, A.; Beale, S.B.; Eller, J.; Lehnert, W.; Büchi, F.N. Modeling and synchrotron imaging of droplet detachment in gas channels of polymer electrolyte fuel cells. J. Power Sources 2018, 404, 159–171. [Google Scholar] [CrossRef]
- Niu, Z.; Fan, L.; Bao, Z.; Jiao, K. Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell. Int. J. Energy Res. 2018, 42, 3328–3338. [Google Scholar] [CrossRef]
- Li, S.Z.; Chen, R.; Wang, H.; Liao, Q.; Zhu, X.; Wang, Z.B. Simulation on the coalescence of the moving liquid column and droplet in a hydrophilic microchannel by volume of fluid method. Appl. Therm. Eng. 2014, 64, 129–138. [Google Scholar] [CrossRef]
- Jo, J.H.; Kim, W.T. Numerical simulation of water droplet dynamics in a right angle gas channel of a polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2015, 40, 8368–8383. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Z.; Liu, F.; Liu, W. Numerical Simulation of Water Transport in a Proton Exchange Membrane Fuel Cell Flow Channel. Energies 2018, 11, 1770. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, W.T. Numerical Investigation of Gas-Liquid Two-Phase Flow inside PEMFC Gas Channels with Rectangular and Trapezoidal Cross Sections. Energies 2018, 11, 1403. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, L.; Yi, P.; Lai, X. Numerical investigation of liquid water dynamics in wave-like gas channels of PEMFCs. Int. J. Energy Res. 2018, 43, 1192–1202. [Google Scholar] [CrossRef]
- Mukherjee, A.; Kandlikar, S.G. A numerical analysis of growing water droplet inside an air supply channel of a PEM fuel cell. In Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, USA, 5–10 November 2006; pp. 1–6. [Google Scholar]
- Akhtar, N.; Kerkhof, P.J.A.M. Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode. Int. J. Hydrogen Energy 2011, 36, 3076–3086. [Google Scholar] [CrossRef]
- Sussman, M.; Puckett, E.G. A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. J. Comput. Phys. 2000, 162, 301–337. [Google Scholar] [CrossRef] [Green Version]
- Tsui, Y.Y.; Liu, C.Y.; Lin, S.W. Coupled level-set and volume-of-fluid method for two-phase flow calculations. Numer. Heat Transf. Part B 2017, 71, 173–185. [Google Scholar] [CrossRef]
- Anyanwu, I.S.; Hou, Y.; Xi, F.; Wang, X.; Yin, Y.; Du, Q.; Jiao, K. Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. Int. J. Hydrogen Energy 2019, 44, 13807–13819. [Google Scholar] [CrossRef]
- ANSYS FLUENT Theory Guide Release 17.2; ANSYS Inc.: Canonsburg, PA, USA, 2016.
- Mancilla, E.; Palacios-Muñoz, A.; Salinas-Vázquez, M.; Vicente, W.; Ascanio, G. A Level Set method for capturing interface deformation in immiscible stratified fluids. Int. J. Heat Fluid Flow 2019, 76, 170–186. [Google Scholar] [CrossRef]
- Theodorakakos, A.; Ous, T.; Gavaises, M.; Nouri, J.M.; Nikolopoulos, N.; Yanagihara, H. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. J. Colloid Interface Sci. 2006, 300, 673–687. [Google Scholar] [CrossRef]
- Zhou, X.; Niu, Z.; Li, Y.; Sun, X.; Du, Q.; Xuan, J.; Jiao, K. Investigation of two-phase flow in the compressed gas diffusion layer microstructures. Int. J. Hydrogen Energy 2019, 44, 26498–26516. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, B. Liquid water flooding process in proton exchange membrane fuel cell cathode with straight parallel channels and porous layer. J. Power Sources 2011, 196, 1776–1794. [Google Scholar] [CrossRef]
- Nishida, K.; Taniguchi, R.; Ishizaki, Y.; Tsushima, S.; Hirai, S. Impacts of channel wettability and flow direction on liquid water transport in the serpentine flow field of a polymer electrolyte fuel cell. J. Power Sources 2015, 275, 447–457. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, G.; Qin, Y.; Du, Q.; Jiao, K. Numerical simulation of gas liquid two-phase flow in anode channel of low-temperature fuel cells. Int. J. Hydrogen Energy 2017, 42, 3250–3258. [Google Scholar] [CrossRef]
- Wang, X.D.; An, B.; Xu, J.L. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions. Energy Convers. Manag. 2013, 65, 528–538. [Google Scholar] [CrossRef]
- Yuan, W.; Tang, Y.; Yang, X.; Wan, Z. Porous metal materials for polymer electrolyte membrane fuel cells–a review. Appl. Energy 2012, 94, 309–329. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Gunnasegaran, P.; Shuaib, N.H. Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink. Int. Commun. Heat Mass Transf. 2011, 38, 474–480. [Google Scholar] [CrossRef]
- Bao, N.; Zhou, Y.; Jiao, K.; Yin, Y.; Du, Q.; Chen, J. Effect of Gas Diffusion Layer Deformation on Liquid Water Transport in Proton Exchange Membrane Fuel Cell. Eng. Appl. Comput. Fluid Mech. 2014, 8, 26–43. [Google Scholar] [CrossRef] [Green Version]
- Golpaygan, A.; Sarchami, A.; Ashgriz, N. Three-dimensional multiphase flow model to study channel flow dynamics of PEM fuel cells. Int. J. Energy Res. 2011, 35, 1188–1199. [Google Scholar] [CrossRef]
Design | Channel Type | Channel Configuration | Amplitude/mm | Pitch/mm |
---|---|---|---|---|
Straight | Straight | Straight | - | - |
Design 1 | Sinusoidal | Hybrid | 0.1 | 2.5 and 5.0 |
Design 2 | Sinusoidal | Hybrid | 0.2 | 2.5 and 5.0 |
Design 3 | Sinusoidal | Hybrid | 0.1 and 0.2 | 2.5 and 5.0 |
Design 4 | Sinusoidal | Non-hybrid | 0.1 | 2.5 |
Design 5 | Sinusoidal | Non-hybrid | 0.1 | 5.0 |
Case No. | Designs | No. of Droplets | Droplet Size (μm) | Inlet Speed (ms−1) | Contact Angle Side; Top (°) |
---|---|---|---|---|---|
1 | Straight | 1 | 200 | 12.5 | 120; 120 |
2 | Design 1 | 1 | 200 | 12.5 | 120; 120 |
3 | Design 2 | 1 | 200 | 12.5 | 120; 120 |
4 | Design 3 | 1 | 200 | 12.5 | 120; 120 |
5 | Design 4 | 1 | 200 | 12.5 | 120; 120 |
6 | Design 5 | 1 | 200 | 12.5 | 120; 120 |
7 | Straight | 3 | 200 | 12.5 | 82; 82 |
8 | Design 1 | 3 | 200 | 12.5 | 82; 82 |
9 | Design 2 | 3 | 200 | 12.5 | 82; 82 |
10 | Design 3 | 3 | 200 | 12.5 | 82; 82 |
11 | Design 4 | 3 | 200 | 12.5 | 82; 82 |
12 | Design 5 | 3 | 200 | 12.5 | 82; 82 |
13 | Straight | 3 | 200 | 10 | 82; 82 |
14 | Design 1 | 3 | 200 | 10 | 82; 82 |
15 | Design 2 | 3 | 200 | 10 | 82; 82 |
16 | Design 3 | 3 | 200 | 10 | 82; 82 |
17 | Design 4 | 3 | 200 | 10 | 82; 82 |
18 | Design 5 | 3 | 200 | 10 | 82; 82 |
19 | Straight | 3 | 200 | 12.5 | 82; 45 |
20 | Design 1 | 3 | 200 | 12.5 | 82; 45 |
21 | Design 2 | 3 | 200 | 12.5 | 82; 45 |
22 | Design 3 | 3 | 200 | 12.5 | 82; 45 |
23 | Design 4 | 3 | 200 | 12.5 | 82; 45 |
24 | Design 5 | 3 | 200 | 12.5 | 82; 45 |
25 | Straight | 3 | 200; 250; 250 | 10 | 82; 82 |
26 | Design 1 | 3 | 200; 250; 250 | 10 | 82; 82 |
27 | Design 2 | 3 | 200; 250; 250 | 10 | 82; 82 |
28 | Design 3 | 3 | 200; 250; 250 | 10 | 82; 82 |
29 | Design 4 | 3 | 200; 250; 250 | 10 | 82; 82 |
Grid Size (x × y × z) | Cell Number | Maximum Velocity Magnitude After Droplet Stabilisation (ms−1) |
---|---|---|
420 × 24 × 36 | 336,490 | 30.5 |
350 × 20 × 30 | 191,748 | 30.1 |
280 × 16 × 24 | 95,910 | 29.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyanwu, I.S.; Hou, Y.; Chen, W.; Pan, F.; Du, Q.; Xuan, J.; Jiao, K. Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC. Energies 2019, 12, 4030. https://doi.org/10.3390/en12214030
Anyanwu IS, Hou Y, Chen W, Pan F, Du Q, Xuan J, Jiao K. Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC. Energies. 2019; 12(21):4030. https://doi.org/10.3390/en12214030
Chicago/Turabian StyleAnyanwu, Ikechukwu S., Yuze Hou, Wenmiao Chen, Fengwen Pan, Qing Du, Jin Xuan, and Kui Jiao. 2019. "Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC" Energies 12, no. 21: 4030. https://doi.org/10.3390/en12214030
APA StyleAnyanwu, I. S., Hou, Y., Chen, W., Pan, F., Du, Q., Xuan, J., & Jiao, K. (2019). Numerical Investigation of Liquid Water Transport Dynamics in Novel Hybrid Sinusoidal Flow Channel Designs for PEMFC. Energies, 12(21), 4030. https://doi.org/10.3390/en12214030