Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System
Abstract
:1. Introduction
- (1)
- In order to establish an accurate USC unit model using generated big data, SAE is adopted as the DNN model structure in this paper. The SAE model can generalize very well and yield better performance when compared to conventional shallow architectures. The SAE model is concise and suitable for big data analysis.
- (2)
- In order to reduce the bad influence of outliers on the modeling, a loss function using MC is developed in this paper.
2. The Ultra-Supercritical Coal-Fired Boiler-Turbine Unit
2.1. Brief Description of USC Unit
2.2. Determination of Input-Output Variables
- The fuel flow and the forced draft volume are balanced to ensure the combustion stability.
- The ratio between the forced draft volume and the induced draft volume remains constant, to ensure that the pressure in the furnace is stable.
- The control of the main steam temperature is relatively independent.
3. Stacked Auto-Encoder
3.1. Auto-Encoder
3.2. New Loss Function Design Using Maximum Correntropy
3.3. SAE Model Structure and Learning Algorithm
4. USC Unit Modeling
4.1. Experimental Settings
4.2. The Modeling Results
4.3. The Modeling Using Maximum Correntropy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
USC | Ultra-supercritical |
SAE | Stacked auto-encoder |
CO2 | Carbon dioxide |
SO2 | Sulfur dioxide |
NOX | Nitrogen oxides |
NN | Neural network |
DNN | Deep neural network |
AE | Auto-encoder |
MSE | Mean square error |
MC | Maximum correntropy |
HP | High-pressure |
IP | Intermediate-pressure |
LP | Low-pressure |
RMSE | Root mean squared error |
MLP | Multi-layer perceptron |
References
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/tjsj/zxfb/201803/t201803 9_1588744.html (accessed on 25 August 2019).
- Zhao, Y.; Wang, S.; Duan, L.; Lei, Y.; Cao, P.; Hao, J. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmos. Environ. 2008, 42, 8442–8452. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Y.; Chang, R. How to stimulate renewable energy power generation effectively? China’s incentive approaches and lessons. Renew. Energy 2016, 92, 147–156. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Y.; Liu, M.; Qiao, Y.; Chong, D.; Yan, J. Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio. Appl. Energy 2018, 216, 212–223. [Google Scholar] [CrossRef]
- János, M.B. High efficiency electric power generation: The environmental role. Prog. Energy Combust. 2007, 33, 107–134. [Google Scholar] [Green Version]
- Liu, J.; Yan, S.; Zeng, D.; Hu, Y.; Lv, Y. A dynamic model used for controller design of a coal fired once-through boiler-turbine unit. Energy 2015, 93, 2069–2078. [Google Scholar] [CrossRef]
- Alobaid, F.; Mertens, N.; Starkloff, R.; Lanz, T.; Heinze, C.; Epple, B. Progress in dynamic simulation of thermal power plants. Prog. Energy Combust. 2016, 59, 79–162. [Google Scholar] [CrossRef]
- Sun, L.; Hua, Q.; Li, D.; Pan, L.; Xue, Y.; Lee, K.Y. Direct energy balance based active disturbance rejection control for coal-fired power plant. ISA Trans. 2017, 70, 486–493. [Google Scholar] [CrossRef]
- Sun, L.; Li, D.; Lee, K.Y.; Xue, Y. Control-oriented modeling and analysis of direct energy balance in coal-fired boiler-turbine unit. Control Eng. Pract. 2016, 55, 38–55. [Google Scholar] [CrossRef]
- Kocaarslan, I.; Cam, E. Experimental modeling and simulation with adaptive control of power plant. Energy Convers. Manag. 2007, 48, 787–796. [Google Scholar] [CrossRef]
- Åström, K.J.; Bell, R.D. Simple Drum-Boiler Models. In Proceedings of the IFAC Power Systems Modeling and Control Applications, Brussels, Belgium, 5–8 September 1988; Volume 21, pp. 123–127. [Google Scholar]
- Liu, X.; Guan, P.; Chan, C. Nonlinear multivariable power plant coordinate control by constrained predictive scheme. IEEE Trans. Control Syst. Technol. 2010, 18, 1116–1125. [Google Scholar] [CrossRef]
- Wu, X.; Shen, J.; Li, Y.; Lee, K.Y. Data-driven modeling and predictive control for boiler-turbine unit. IEEE Trans. Energy Convers. 2013, 28, 470–481. [Google Scholar] [CrossRef]
- Moradi, H.; Alasty, A.; Vossoughi, G. Nonlinear dynamics and control of bifurcation to regulate the performance of a boiler-turbine unit. Energy Convers. Manag. 2013, 68, 105–113. [Google Scholar] [CrossRef]
- Bracco, S.; Troilo, M.; Trucco, A. A simple dynamic model and stability analysis of a steam boiler drum. J. Power Energy 2009, 223, 809–820. [Google Scholar] [CrossRef]
- Alobaid, F.; Postler, R.; Ströhle, J.; Epple, B.; Gee, K.H. Modeling and investigation start-up procedures of a combined cycle power plant. Appl. Energy 2008, 85, 1173–1189. [Google Scholar] [CrossRef]
- Alobaid, R.; Ströhle, J.; Epple, B.; Gee, K.H. Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures. Appl. Energy 2009, 86, 1274–1282. [Google Scholar] [CrossRef]
- Benato, A.; Bracco, S.; Stoppato, A.; Mirandola, A. Dynamic simulation of combined cycle power plant cycling in the electricity market. Energy Convers. Manag. 2016, 107, 76–85. [Google Scholar] [CrossRef]
- Tian, Z.; Yuan, J.; Zhang, X.; Kong, L.; Wang, J. Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints. ISA Trans. 2018, 76, 43–56. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.; Su, Z.; Wang, B. A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit. Appl. Energy 2017, 189, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Irwin, G.; Brown, M.; Hogg, B.; Swidenbank, E. Neural network modeling of a 200 MW boiler system. IEE Proc. Control Theory Appl. 1995, 142, 529–536. [Google Scholar] [CrossRef]
- Suresh, M.V.J.J.; Reddy, K.S.; Kolar, A.K. ANN-GA based optimization of a high ash coal-fired supercritical power plant. Appl. Energy 2011, 88, 4867–4873. [Google Scholar] [CrossRef]
- Lu, S.; Hogg, B.W. Dynamic nonlinear modeling of power plant by physical principles and neural networks. Int. J. Electr. Power Energy Syst. 2000, 22, 67–78. [Google Scholar] [CrossRef]
- Rusinowski, H.; Stanek, W. Neural modelling of steam boilers. Energy Convers. Manag. 2007, 48, 2802–2809. [Google Scholar] [CrossRef]
- Smrekar, J.; Pandit, D.; Fast, M.; Assadi, M.; De, S. Prediction of power output of a coal-fired power plant by artificial neural network. Neural Comput. Appl. 2010, 19, 725–740. [Google Scholar] [CrossRef]
- Liu, X.; Kong, X.; Hou, G.; Wang, J. Modeling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods. Energy Convers. Manag. 2013, 65, 518–527. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, X.; Shen, J. Extended state observer based fuzzy model predictive control for ultra-supercritical boiler-turbine unit. Appl. Therm. Eng. 2017, 118, 90–100. [Google Scholar] [CrossRef]
- Hou, G.; Du, H.; Yang, Y.; Huang, C.; Zhang, J. Coordinated control system modeling of ultra-supercritical unit based on a new T-S fuzzy structure. ISA Trans. 2018, 74, 120–133. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Proceedings of the 20th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2006; Volume 19, pp. 153–160. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 2016, 89, 171–178. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Chen, J. Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 2016, 32, 2673–2681. [Google Scholar] [CrossRef]
- Khodayar, M.; Kaynak, O.; Khodayar, M.E. Rough deep neural architecture for short-term wind speed forecasting. IEEE Trans. Ind. Inform. 2017, 13, 2770–2779. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
Parameter | Training Sample Set | Validating Sample Set |
---|---|---|
u1 | 36/20,000 | 14/3000 |
u2 | 24/20,000 | 8/3000 |
u3 | 34/20,000 | 11/3000 |
y1 | 28/20,000 | 14/3000 |
y2 | 23/20,000 | 12/3000 |
y3 | 29/20,000 | 9/3000 |
Temperature | Pressure | Power | ||
---|---|---|---|---|
MLP | Training | 0.0039 | 0.0022 | 0.0034 |
Validating | 0.0076 | 0.0065 | 0.0072 | |
SAE | Training | 0.0016 | 0.0007 | 0.0015 |
Validating | 0.0031 | 0.0019 | 0.0034 |
RMSE | Temperature | Pressure | Power | |
---|---|---|---|---|
MSE | Training | 0.0231 | 0.0301 | 0.0307 |
Validating | 0.0529 | 0.0476 | 0.0559 | |
MC | Training | 0.0185 | 0.0209 | 0.0169 |
Validating | 0.0217 | 0.0275 | 0.0248 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, X.; Kong, X.; Lee, K.Y. Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System. Energies 2019, 12, 4035. https://doi.org/10.3390/en12214035
Zhang H, Liu X, Kong X, Lee KY. Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System. Energies. 2019; 12(21):4035. https://doi.org/10.3390/en12214035
Chicago/Turabian StyleZhang, Hao, Xiangjie Liu, Xiaobing Kong, and Kwang Y. Lee. 2019. "Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System" Energies 12, no. 21: 4035. https://doi.org/10.3390/en12214035
APA StyleZhang, H., Liu, X., Kong, X., & Lee, K. Y. (2019). Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System. Energies, 12(21), 4035. https://doi.org/10.3390/en12214035