Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems
Abstract
:1. Introduction
2. Development of the Proposed Input Filter Design Method for Power Converters with CPL
2.1. Search of Stability Conditions via Liénard Based Nonlinear Lyapunov Approach
2.1.1. First-Order Capacitive Filter Topology
2.1.2. Second-Order LC Filter Topology
2.2. Proposed Filter Design Criteria through Conductance Diagram Description
2.2.1. Design Criterion for the First-Order Input Filter
2.2.2. Design Criterion for Second-Order Input Filter
- Firstly, the desired cut-off frequency is chosen to protect the source against switching harmonics propagation. It should be carefully selected, considering that a small value of could lead to large components sizing, which would imply a higher cost and weight. On the other hand, there is an upper bound for given by the switching converter frequency, whose practical higher limit is typically selected one decade below such switching frequency. In this case study, a value equals to 1 kHz is taken.
- Next, the operation power is selected, in accordance with the power module requirements. In this example, the second-order input filter is designed for supplying an electrical power up to W (solid black line in Figure 9a).
- The goal of the following step is to obtain the range of selectable values for capacitor . These values are those which guarantee stable operation points for the and previously chosen. This step is easily fulfilled using the conductance diagram in Figure 9a, where is plotted for different values of capacitor (blue horizontal lines).
- Then, from those admissible values of , one should be chosen, according to the required variation ranges of v and , which are contemplated in the specifications of the power module. This design step is conducted with the help of the invariant region diagram in Figure 9b, parametrised in terms of .
- Finally, once the required was selected and knowing the desired , the inductance can be easily obtained from:
3. Application Case: SM Controlled Boost Converter with Second-Order Filter
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Second Order Sliding Mode Power Control
References
- Dragičević, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Trans. Power Electron. 2016, 31, 3528–3549. [Google Scholar] [CrossRef]
- Waqar, A.; Shahbaz Tanveer, M.; Ahmad, J.; Aamir, M.; Yaqoob, M.; Anwar, F. Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan. Energies 2017, 10, 1625. [Google Scholar] [CrossRef]
- Gabriel Rullo, P.; Costa-Castelló, R.; Roda, V.; Feroldi, D. Energy Management Strategy for a Bioethanol Isolated Hybrid System: Simulations and Experiments. Energies 2018, 11, 1362. [Google Scholar] [CrossRef]
- Werth, A.; Kitamura, N.; Matsumoto, I.; Tanaka, K. Evaluation of centralized and distributed microgrid topologies and comparison to Open Energy Systems (OES). In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 492–497. [Google Scholar] [CrossRef]
- Li, S.; Yu, X.; Fridman, L.; Man, Z.; Wang, X. Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications; Springer: New York, NY, USA, 2018; Volume 115. [Google Scholar]
- Fridman, L.; Barbot, J.P.; Plestan, F. Recent Trends in Sliding Mode Control; IET: London, UK, 2016. [Google Scholar]
- Bandyopadhyay, B.; Sivaramakrishnan, J.; Spurgeon, S. Advances in Sliding Mode Control. Concept, Theory and Implementation; Springer: New York, NY, USA, 2013; Volume 440. [Google Scholar]
- Fridman, L.; Moreno, J.; Iriarte, R. Sliding Modes after the first Decade of the 21st Century; Springer: New York, NY, USA, 2011. [Google Scholar]
- Bartolini, G.; Fridman, L.; Pisano, A.; Usai, E. Modern Sliding Mode Control Theory. New Perspectives and Applications; Springer: New York, NY, USA, 2008; Volume 375. [Google Scholar]
- Martínez-Treviño, B.; Jammes, R.; Aroudi, A.; Martinez-Salamero, L. Sliding-mode control of a boost converter supplying a constant power load. IFAC-PapersOnLine 2017, 50, 7807–7812. [Google Scholar] [CrossRef]
- Yasin, A.R.; Ashraf, M.; Bhatti, A.I. Fixed Frequency Sliding Mode Control of Power Converters for Improved Dynamic Response in DC Micro-Grids. Energies 2018, 11, 2799. [Google Scholar] [CrossRef]
- Ramos-Paja, C.A.; Bastidas-Rodríguez, J.D.; González, D.; Acevedo, S.; Peláez-Restrepo, J. Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids. Energies 2017, 10, 1847. [Google Scholar] [CrossRef]
- Serna-Garcés, S.I.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems. Energies 2016, 9, 245. [Google Scholar] [CrossRef]
- Su, X.; Han, M.; Guerrero, J.M.; Sun, H. Microgrid Stability Controller Based on Adaptive Robust Total SMC. Energies 2015, 8, 1784–1801. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Gautam, A.; Fulwani, D. Constant power loads and their effects in DC distributed power systems: A review. Renew. Sustain. Energy Rev. 2017, 72, 407–421. [Google Scholar] [CrossRef]
- AL-Nussairi, M.K.; Bayindir, R.; Padmanaban, S.; Mihet-Popa, L.; Siano, P. Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques. Energies 2017, 10, 1656. [Google Scholar] [CrossRef]
- Huangfu, Y.; Pang, S.; Nahid-Mobarakeh, B.; Guo, L.; Rathore, A.K.; Gao, F. Stability Analysis and Active Stabilization of On-board DC Power Converter System with Input Filter. IEEE Trans. Ind. Electron. 2018, 65, 790–799. [Google Scholar] [CrossRef]
- Mishra, R.; Hussain, M.N.; Agarwal, V. A Sliding Mode Control based stabilization solution for multiple Constant Power Loads with identical input filters interfaced with the DC bus of a ‘More Electric’ Aircraft. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Li, A.; Zhang, D. Necessary and sufficient stability criterion and new forbidden region for load impedance specification. Chin. J. Electron. 2014, 23, 628–634. [Google Scholar]
- Wu, M.; Lu, D.D.C. Active stabilization methods of electric power systems with constant power loads: A review. J. Mod. Power Syst. Clean Energy 2014, 2, 233–243. [Google Scholar] [CrossRef]
- Riccobono, A.; Santi, E. Comprehensive Review of Stability Criteria for DC Power Distribution Systems. IEEE Trans. Ind. Appl. 2014, 50, 3525–3535. [Google Scholar] [CrossRef]
- Riccobono, A.; Santi, E. A novel Passivity-Based Stability Criterion (PBSC) for switching converter DC distribution systems. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 2560–2567. [Google Scholar] [CrossRef]
- Sanchez, S.; Molinas, M. Assessment of a stability analysis tool for constant power loads in DC-grids. In Proceedings of the 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia, 4–6 September 2012; pp. DS3b.2-1–DS3b.2-5. [Google Scholar] [CrossRef]
- Sanchez, S.; Ortega, R.; Griño, R.; Bergna, G.; Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2204–2211. [Google Scholar] [CrossRef] [Green Version]
- Miyagi, H.; Munda, J.L.; Miyagi, N. Study on Lyapunov Functions for Lienard-type Nonlinear Systems. IEEJ Trans. Electron. Inf. Syst. 2001, 121, 748–755. [Google Scholar]
- Levant, A. Principles of 2-sliding mode design. Automatica 2007, 43, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: New York, NY, USA, 2014. [Google Scholar]
System Parameters | STA Parameters | ||||
---|---|---|---|---|---|
24 V | 1 kHz | 200 | |||
0.144 Ω | 0.85 mF | 5 × 10 | |||
750 W | 30 H | ||||
50 H | 1 mΩ | ||||
50 kHz | 48 V |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson Azzano, J.L.; Moré, J.J.; Puleston, P.F. Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems. Energies 2019, 12, 4048. https://doi.org/10.3390/en12214048
Anderson Azzano JL, Moré JJ, Puleston PF. Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems. Energies. 2019; 12(21):4048. https://doi.org/10.3390/en12214048
Chicago/Turabian StyleAnderson Azzano, Jorge Luis, Jerónimo J. Moré, and Paul F. Puleston. 2019. "Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems" Energies 12, no. 21: 4048. https://doi.org/10.3390/en12214048
APA StyleAnderson Azzano, J. L., Moré, J. J., & Puleston, P. F. (2019). Stability Criteria for Input Filter Design in Converters with CPL: Applications in Sliding Mode Controlled Power Systems. Energies, 12(21), 4048. https://doi.org/10.3390/en12214048