Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Overall Procedure and Measurements
3.2. Informational Factsheets and Riskmeter
3.3. Participants of Informed Citizen Panels in Geneva and Zurich
4. Results
4.1. Preferences and Image Associations for Individual Electricity Technologies in Geneva
4.2. Ratings of Sustainability Impacts of Electricity Technologies in Geneva
4.3. Preferred Swiss Electricity Mix 2035 Using Riskmeter in Geneva
4.4. Evaluation of Informational Materials in Geneva
4.5. Differences between Informed Citizen Panels in Two Swiss Cities of Geneva and Zurich
5. Discussion
5.1. Informed Preferences and Ratings of Sustainability Impacts
5.2. Longer-Term Stability of Preferences and Impact of Informational Tools
5.3. Contextual Differences between Two Swiss Cities
5.4. Limitations and Future Research
6. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boykoff, M.; Katzung, J.; Nacu-Schmidt, A. Media and Climate Change Observatory Monthly Summary: The Earth is facing a climate change deadline-Issue 26, February 2019. Media Clim. Chang. Obs. Mon. Summ. 2019, 27. Available online: https://scholar.colorado.edu/mecco_summaries/27/ (accessed on 5 November 2019).
- Swiss Federal Office of Energy (SFOE). Statistique Suisse de L’électricité 2018; SFOE: Bern, Switzerland, 2018. [Google Scholar]
- Van Rijnsoever, F.J.; Farla, J.C.M. Identifying and explaining public preferences for the attributes of energy technologies. Renew. Sustain. Energy Rev. 2014, 31, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Boudet, H.S. Public perceptions of and responses to new energy technologies. Nat. Energy 2019, 4, 446–455. [Google Scholar] [CrossRef]
- Vatter, A. Direkte Demokratie in der Schweiz. Entwicklungen, Debatten und Wirkungen. In Bestandsaufnahmen un Wirkungen im Internationalen Vergleich, 3rd ed.; Freitag, M., Wagschal, U., Eds.; LIT Verlag: Berlin, Germany, 2007. [Google Scholar]
- Stadelmann-Steffen, I. Citizens as veto players: Climate change policy and the constraints of direct democracy. Environ. Politics 2011, 20, 485–507. [Google Scholar] [CrossRef]
- Mayer, L.A.; de Bruin, W.B.; Morgan, M.G. Informed public choices for low-carbon electricity portfolios using a computer decision tool. Environ. Sci. Technol. 2014, 48, 3640–3648. [Google Scholar] [CrossRef] [PubMed]
- Scheer, D.; Konrad, W.; Scheel, O. Public evaluation of electricity technologies and the future low-carbon portfolios in Germany and the USA. Energy Sustain. Soc. 2013, 3, 1–13. [Google Scholar] [CrossRef]
- Volken, S.; Xexakis, G.; Trutnevyte, E. Perspectives of Informed Citizen Panel on Low-Carbon Electricity Portfolios in Switzerland and Longer-Term Evaluation of Informational Materials. Environ. Sci. Technol. 2018, 52, 11478–11489. [Google Scholar] [CrossRef] [PubMed]
- ter Mors, E.; Terwel, B.W.; Daamen, D.D.L.; Reiner, D.M.; Schumann, D.; Anghel, S.; Boulouta, I.; Cismaru, D.M.; Constantin, C.; de Jager, C.C.H.; et al. A comparison of techniques used to collect informed public opinions about CCS: Opinion quality after focus group discussions versus information-choice questionnaires. Int. J. Greenh. Gas Control 2013, 18, 256–263. [Google Scholar] [CrossRef]
- Wong-Parodi, G.; Krishnamurti, T.; Davis, A.; Schwartz, D.; Fischhoff, B. A decision science approach for integrating social science in climate and energy solutions. Nat. Clim. Chang. 2016, 6, 563–569. [Google Scholar] [CrossRef]
- Pidgeon, N.; Demski, C.; Butler, C.; Parkhill, K.; Spence, A. Creating a national citizen engagement process for energy policy. Proc. Natl. Acad. Sci. USA 2014, 111 (Suppl. 4), 13606–13613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong-Parodi, G.; Fischhoff, B.; Strauss, B. A method to evaluate the usability of interactive climate change impact decision aids. Clim. Chang. 2014, 126, 485–493. [Google Scholar] [CrossRef]
- Jobin, M.; Siegrist, M. We choose what we like – Affect as a driver of electricity portfolio choice. Energy Policy 2018, 122, 736–747. [Google Scholar] [CrossRef]
- Truelove, H.B. Energy source perceptions and policy support: Image associations, emotional evaluations, and cognitive beliefs. Energy Policy 2012, 45, 478–489. [Google Scholar] [CrossRef]
- Visschers, V.H.M.; Siegrist, M. Find the differences and the similarities: Relating perceived benefits, perceived costs and protected values to acceptance of five energy technologies. J. Environ. Psychol. 2014, 40, 117–130. [Google Scholar] [CrossRef]
- Zierhofer, W. Switzerland. In Bordering Space; Houtoum, H.V., Kramsch, O., Zierfhoner, W., Eds.; Ashgate Publishing Limited: Hants, UK, 2005. [Google Scholar]
- Corner, A.; Venables, D.; Spence, A.; Poortinga, W.; Demski, C.; Pidgeon, N. Nuclear power, climate change and energy security: Exploring British public attitudes. Energy Policy 2011, 39, 4823–4833. [Google Scholar] [CrossRef]
- Grove-White, R.; Kearnes, M.; MacNaghten, P.; Wynne, B. Nuclear Futures: Assessing Public Attitudes to New Nuclear Power. Political Q. 2006, 77, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Pidgeon, N.F.; Lorenzoni, I.; Poortinga, W. Climate change or nuclear power—No thanks! A quantitative study of public perceptions and risk framing in Britain. Glob. Environ. Chang. 2008, 18, 69–85. [Google Scholar] [CrossRef]
- Devine-Wright, P. Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy. Wind Energy 2005, 8, 125–139. [Google Scholar] [CrossRef]
- Musall, F.D.; Kuik, O. Local acceptance of renewable energy—A case study from southeast Germany. Energy Policy 2011, 39, 3252–3260. [Google Scholar] [CrossRef]
- Walter, G. Determining the local acceptance of wind energy projects in Switzerland: The importance of general attitudes and project characteristics. Energy Res. Soc. Sci. 2014, 4, 78–88. [Google Scholar] [CrossRef]
- Zhai, P.; Williams, E.D. Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model. Renew. Energy 2012, 41, 350–357. [Google Scholar] [CrossRef]
- de Best-Waldhober, M.; Daamen, D.; Ramirez Ramirez, A.; Faaij, A.; Hendriks, C.; de Visser, E. Informed public opinions on CCS in comparison to other mitigation options. Energy Procedia 2009, 1, 4795–4802. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, M. Energy sources, public policy, and public preferences: Analysis of US national and site-specific data. Energy Policy 2009, 37, 3242–3249. [Google Scholar] [CrossRef]
- Lee, R.P. Stability of energy imageries and affect following shocks to the global energy system: The case of Fukushima. J. Risk Res. 2015, 18, 965–988. [Google Scholar] [CrossRef]
- Van Rijnsoever, F.J.; van Mossel, A.; Broecks, K.P.F. Public acceptance of energy technologies: The effects of labeling, time, and heterogeneity in a discrete choice experiment. Renew. Sustain. Energy Rev. 2015, 45, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wong-Parodi, G.; Fischhoff, B. How stable are preferences among emerging electricity generation technologies. Environ. Res. Commun. 2019, 1, 071002. [Google Scholar] [CrossRef]
- Zoellner, J.; Schweizer-Ries, P.; Wemheuer, C. Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy 2008, 36, 4136–4141. [Google Scholar] [CrossRef]
- Bessette, D.L.; Arvai, J.; Campbell-Arvai, V. Decision Support Framework for Developing Regional Energy Strategies. Environ. Sci. Technol. 2014, 48, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Demski, C.; Spence, A.; Pidgeon, N. Effects of exemplar scenarios on public preferences for energy futures using the my2050 scenario-building tool. Nat. Energy 2017, 2, 17027. [Google Scholar] [CrossRef]
- Fleishman, L.A.; De Bruin, W.B.; Morgan, M.G. Informed public preferences for electricity portfolios with CCS and other low-carbon technologies. Risk Anal. 2010, 30, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Trutnevyte, E.; Stauffacher, M.; Scholz, R.W. Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment. Energy Policy 2011, 39, 7884–7895. [Google Scholar] [CrossRef]
- Madlener, R.; Kowalski, K.; Stagl, S. New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria. Energy Policy 2007, 35, 6060–6074. [Google Scholar] [CrossRef]
- Bessette, D.L.; Arvai, J.L. Engaging attribute tradeoffs in clean energy portfolio development. Energy Policy 2018, 115, 221–229. [Google Scholar] [CrossRef]
- Leiserowitz, A.; Smith, N. Affective imagery, risk perceptions, and climate change communication. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Jobin, M.; Visschers, V.H.M.; van Vliet, O.P.R.; Árvai, J.; Siegrist, M. Affect or information? Examining drivers of public preferences of future energy portfolios in Switzerland. Energy Res. Soc. Sci. 2019, 52, 20–29. [Google Scholar] [CrossRef]
- Visschers, V.H.M.; Keller, C.; Siegrist, M. Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model. Energy Policy 2011, 39, 3621–3629. [Google Scholar] [CrossRef]
- Maehr, A.M.; Watts, G.R.; Hanratty, J.; Talmi, D. Emotional response to images of wind turbines: A psychophysiological study of their visual impact on the landscape. Landsc. Urban Plan. 2015, 142, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Bruine de Bruin, W.; Wong-Parodi, G. The role of initial affective impressions in responses to educational communications: The case of carbon capture and sequestration (CCS). J. Exp. Psychol. Appl. 2014, 20, 126–135. [Google Scholar] [CrossRef] [PubMed]
- de Best-Waldhober, M.; Daamen, D.; Faaij, A. Informed and uninformed public opinions on CO2 capture and storage technologies in the Netherlands. Int. J. Greenh. Gas Control 2009, 3, 322–332. [Google Scholar] [CrossRef]
- Morgan, G.M.; Fischhoff, B.; Bostrom, A.; Atman, C.J. Risk Communication: A Mental Models Approach; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Scheer, D.; Konrad, W.; Wassermann, S. The good, the bad, and the ambivalent: A qualitative study of public perceptions towards energy technologies and portfolios in Germany. Energy Policy 2017, 100, 89–100. [Google Scholar] [CrossRef]
- Bessette, D.L.; Campbell-Arvai, V.; Arvai, J. Expanding the Reach of Participatory Risk Management: Testing an Online Decision-Aiding Framework for Informing Internally Consistent Choices. Risk Anal. 2016, 36, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Stagl, S. Multicriteria evaluation and public participation: The case of UK energy policy. Land Use Policy 2006, 23, 53–62. [Google Scholar] [CrossRef]
- Slovic, P. The Construction of Preference. Am. Psychol. 1995, 50, 364–371. [Google Scholar] [CrossRef]
- Landwehr, J.R.; McGill, A.L.; Hermmann, A. It’s Got the Look: The Effect of Friendly and Aggressive “Facial ” Expressions on Product Liking and Sales. J. Mark. 2011, 75, 132–146. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Volken, S.; Xexakis, G. Factsheets of Electricity Generation Technologies in Switzerland: Technical Characteristics, Resource Potentials, Environmental, Health and Economic Impacts; Zenodo: Genève, Switzerland, 2019. [Google Scholar] [CrossRef]
- Volken, S.; Wong-Parodi, G.; Trutnevyte, E. Public awareness and perception of environmental, health and safety risks to electricity generation: An explorative interview study in Switzerland. J. Risk Res. 2019, 22, 432–447. [Google Scholar] [CrossRef]
- Xexakis, G.; Volken, S.; Trutnevyte, E. Riskmeter-Portfolio Builder. Available online: https://portfolio-builder.riskmeter.ch/basic/ (accessed on 5 May 2019).
- Berntsen, P.B.; Trutnevyte, E. Ensuring diversity of national energy scenarios: Bottom-up energy system model with Modeling to Generate Alternatives. Energy 2017, 126, 886–898. [Google Scholar] [CrossRef] [Green Version]
- Xexakis, G.; Ralph, H.; Volken, S.; Trutnevyte, E. Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of experts and the public. Poster presented at the Annual Conference of the Swiss Competence Center for Energy Research—Supply of Electricity (SCCER-SoE), Lausanne, Switzerland, 6 September 2019. [Google Scholar]
- Swiss Federal Office for Statistics (SFSO). Données Relatives à l’âge de la Population Résidante Permanente Selon la Catégorie de Nationalité et le Sexe; SFSO: Bern, Switzerland, 2018. [Google Scholar]
- Swiss Federal Office for Statistics (SFSO). Population Résidante Permanente de 15 Ans et Plus, Selon la Formation Achevée la Plus Élevée; SFSO: Bern, Switzerland, 2017. [Google Scholar]
- Peters, E.; Slovic, P. The Role of Affect and Worldviews as Orienting Dispositions in the Perception and Acceptance of Nuclear Power. J. Appl. Soc. Psychol. 1996, 26, 1427–1453. [Google Scholar] [CrossRef]
- Loloum, T. La vie touristique des grands barrages hydroélectriques. Mondes du Tourisme 2016, 12, 1–33. [Google Scholar] [CrossRef]
- Rudolf, M.; Seidl, R.; Moser, C.; Krütli, P.; Stauffacher, M. Public preference of electricity options before and after Fukushima. J. Integr. Environ. Sci. 2014, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gamma, K.; Stauch, A.; Wüstenhagen, R. 7th Consumer Barometer of Renewable Energy; Good Energies Chair for Management of Renewable Energies, University of St. Gallen: St. Gallen, Switzerland, 2017. [Google Scholar]
- Cousse, J.; Wüstenhagen, R. 8th Consumer Barometer of Renewable Energy; Good Energies Chair for Management of Renewable Energies, University of St. Gallen: St. Gallen, Switzerland, 2018. [Google Scholar]
- Swiss Federal Office of Energy (SFOE). La Stratégie Énergétique 2050 Après L’entrée en Vigueur de la Nouvelle Loi Sur L’énergie; SFOE: Bern, Switzerland, 2018. [Google Scholar]
- Swiss Federal Office of Energy (SFOE). Perspectives Énergétiques 2050: Résumé; SFOE: Bern, Switzerland, 2013. [Google Scholar]
- Fisher, D.R. The broader importance of #FridaysForFuture. Nat. Clim. Chang. 2019, 9, 430–431. [Google Scholar]
- Bertsch, V.; Hall, M.; Weinhardt, C.; Fichtner, W. Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany. Energy 2016, 114, 465–477. [Google Scholar] [CrossRef]
- Bidwell, D. The Effects of Information on Public Attitudes Toward Renewable Energy. Environ. Behav. 2016, 48, 743–768. [Google Scholar] [CrossRef]
- Stadelmann-Steffen, I. Bad news is bad news: Information effects and citizens’ socio-political acceptance of new technologies of electricity transmission. Land Use Policy 2019, 81, 531–545. [Google Scholar] [CrossRef]
- Wilson, R.S.; Arvai, J.L. When Less is More: How Affect Influences Preferences When Comparing Low and High-risk Options. J. Risk Res. 2006, 9, 165–178. [Google Scholar] [CrossRef]
- Tsay, M.; Brady, M. A case study of cooperative learning and communication pedagogy: Does working in teams make a difference? J. Scholarsh. Teach. Learn. 2010, 10, 78–89. [Google Scholar]
- Cook, T.D.; Flay, B.R. The Persistence of Experimentally Induced Attitude Change. Adv. Exp. Soc. Psychol. 1978, 11, 1–57. [Google Scholar]
- Verplanken, B. Persuasive Communication of Risk Information: A Test of Cue Versus Message Processing Effects in a Field Experiment. Personal. Soc. Psychol. 1991, 17, 188–193. [Google Scholar] [CrossRef]
- Xexakis, G.; Trutnevyte, E. Are interactive web-tools for environmental scenario visualization worth the effort? An experimental study on the Swiss electricity supply scenarios 2035. Environ. Model. Softw. 2019, 119, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Burger, P.; Schubert, I.; Dijk, J.V.; Puntiroli, M.; Volland, B.; Weber, S.; Farsi, M. Consommation D’énergie des Ménages en Suisse: Principaux Résultats de L’enquête Sur la Consommation Énergétique des Ménages; SuisseEnergie: Ittigen, Switzerland, 2018. [Google Scholar]
- Ebers, A.; Wüstenhagen, R. 6th Consumer Barometer of Renewable Energy; Good Energies Chair for Management of Renewable Energies, University of St. Gallen: St. Gallen, Switzerland, 2016. [Google Scholar]
- Linder, W.; Vatter, A. Institutions and outcomes of Swiss federalism: The role of the cantons in Swiss politics. West Eur. Politics 2001, 24, 95–122. [Google Scholar] [CrossRef]
- Tullett, A.M.; Hart, W.P.; Feinberg, M.; Fetterman, Z.J.; Gottlieb, S. Is ideology the enemy of inquiry? Examining the link between political orientation and lack of interest in novel data. J. Res. Personal. 2016, 63, 123–132. [Google Scholar] [CrossRef]
- Swiss Federal Chancellery. Votation n°612, Résultats Dans les Cantons; Swiss Federal Chancellery: Bern, Switzerland, 2017. [Google Scholar]
- Sasse, J.-P.; Trutnevyte, E. Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation. Appl. Energy 2019, 254, 113724. [Google Scholar] [CrossRef]
- Mohr, L.; Burg, V.; Thees, O.; Trutnevyte, E. Spatial hot spots and clusters of bioenergy combined with socio-economic analysis in Switzerland. Renew. Energy 2019, 140, 840–851. [Google Scholar] [CrossRef]
March | April | May | |
---|---|---|---|
Before the Workshop | At the Workshop | After the Workshop | |
Survey #1, N = 33 | Survey #6, N = 33 | Survey #7, N = 33 | |
Self-rated general interest (six items; seven-point Likert scale; max. score 42) | 24.2 ± 6.9 * | 27.96 ± 4.5 * | |
Self-rated interest in last four weeks (six items; seven-point Likert scale; max. score 42) | 14.2 ± 4.3 | 15.4 ± 4.5 | |
Self-rated knowledge (six items; seven-point Likert scale; max. score 42) | 21.8 ± 3.9 * | 24.7 ± 3.1 * | |
General energy knowledge test (20 true-or-false questions; max. score 20) | 8.5 ± 2.6 * | 10.8 ± 3.1 * | |
Willingness-to-act (seven items, seven-point Likert scale, max. score 49) | 41.5 ± 5.0 | 42.1 ± 4.6 | |
Evaluation of tools (10 items; seven-point Likert scale; max. score 70) | |||
Factsheets | 59.1 ± 5.7 ** | 60.8 ± 5.5 | |
Web-tool Riskmeter | 55.6 ± 7.4 | 59.0 ± 6.1 | |
Group discussions | 53.6 ± 6.1 | 51.6 ± 10.3 *** | |
Whole workshop | 61.2 ± 5.9 *** | 61.9 ± 7.1 |
Before the Workshop: Survey #1 | At the Workshop: Survey #2 – #6 | After the Workshop: Survey #7 | ||||
---|---|---|---|---|---|---|
N = 33 | N = 46 | N = 33 | N = 46 | N = 33 | N = 45 | |
Geneva | Zurich | Geneva | Zurich | Geneva | Zurich | |
Technology preferences (Mean) (seven-point Likert scale) | ||||||
Large hydro dams | 5.3 ± 1.7 | 5.4 ± 1.8 | 5.7 ± 1.3 * | 4.9 ± 1.8 | 5.8 ± 1.5 | 5.2 ± 1.8 |
Large run-of-river | 5.7 ± 1.6 ** | 4.6 ± 1.9 | 6.1 ± 1.0 ** | 5.1 ± 1.8 | 6.0 ± 1.2 * | 5.3 ± 1.6 |
Small hydro power | 5.3 ± 2.4 | 4.7 ± 1.9 | 4.9 ± 1.9 | 4.9 ± 1.8 | 5.3 ± 1.7 | 4.7 ± 1.7 |
Nuclear | 2.5 ± 1.7 | 2.7 ± 2.2 | 2.3 ± 1.6 | 2.8 ± 2.2 | 2.2 ± 1.6 | 2.8 ± 2.3 |
Solar cells | 5.7 ± 1.3 | 6.0 ± 1.4 | 5.4 ± 1.5 | 5.4 ± 1.6 | 5.6 ± 1.9 | 5.8 ± 1.4 |
Wind power | 5.5 ± 1.8 | 4.7 ± 2.2 | 4.9 ± 1.8 | 5.2 ± 1.8 | 5.6 ± 2.2 | 5.1 ± 1.9 |
Deep geothermal | 5.5 ± 2.4 | 4.9 ± 2.1 | 3.7 ± 2.2 | 3.8 ± 2.0 | 3.8 ± 2.1 | 3.9 ± 1.8 |
Large natural gas | 2.9 ± 1.6 ** | 3.8 ± 1.8 | 1.7 ± 1.0 ** | 2.6 ± 1.7 | 2.0 ± 1.2 | 2.5 ± 1.5 |
Woody biomass | 5.1 ± 2.2 | 4.8 ± 2.0 | 3.7 ± 2.0 | 3.7 ± 1.7 | 4.7 ± 1.8 | 4.1 ± 1.8 |
Biogas | 5.5 ± 2.3 | 5.2 ± 2.0 | 4.6 ± 1.7 | 4.6 ± 1.6 | 4.6 ± 2.1 | 4.5 ± 1.7 |
Waste incineration | 4.6 ± 2.0 | 4.9 ± 1.6 | 5.6 ± 1.6 | 5.4 ± 1.5 | 6.0 ± 1.1 * | 5.4 ± 1.6 |
Net import | 2.9 ± 1.5 | 3.3 ± 1.6 | 2.8 ± 1.5 | 3.3 ± 1.9 | 2.9 ± 1.8 | 3.3 ± 1.8 |
Electricity savings and efficiency | 6.6 ± 1.8 * | 5.6 ± 2.1 | 6.8 ± 2.0 | 6.2 ± 1.6 | 6.9 ± 2.3 ** | 5.8 ± 1.9 |
Mix preferences (Mean) (TWh in Riskmeter) | ||||||
Large hydro dams | 20.5 ± 1.1 | 20.3 ± 1.1 | ||||
Large run-of-river | 19.3 ± 1.1 ** | 18.7 ± 1.0 | ||||
Small hydro power | 4.7 ± 0.9 | 4.5 ± 0.9 | ||||
Nuclear | 1.6 ± 4.1 * | 5.0 ± 8.0 | ||||
Solar cells | 11.7 ± 3.5 | 11.3 ± 5.7 | ||||
Wind power | 2.3 ± 1.2 | 2.1 ± 1.5 | ||||
Deep geothermal | 1.1 ± 1.5 | 0.8 ± 1.3 | ||||
Large natural gas | 0.4 ± 1.5 | 1.0 ± 2.5 | ||||
Woody biomass | 0.4 ± 0.3 | 0.3 ± 0.3 | ||||
Biogas | 0.8 ± 0.5 | 0.7 ± 0.4 | ||||
Waste incineration | 3.0 ± 0.5 * | 2.7 ± 0.5 | ||||
Net import | 0.6 ± 1.8 | 0.8 ± 0.4 | ||||
Electricity savings and efficiency | 5.8 ± 1.7 ** | 3.7 ± 2.2 | ||||
Self-rated general interest (six items; seven-point Likert scale; max. score 42) | 24.2 ± 6.9 ** | 28.6 ± 7.5 | 28.0 ± 4.5 | 28.7 ± 6.5 | ||
Self-rated interest in last four weeks (six items; seven-point Likert scale; max. score 42) | 14.2 ± 4.26 ** | 18.1 ± 6.5 | 15.4 ± 4.5 | 16.3 ± 5.6 | ||
Self-rated knowledge (six items; seven-point Likert scale; max. score 42) | 21.8 ± 3.9 ** | 25.6 ± 6.5 | 24.7 ± 3.1 ** | 28.0 ± 5.0 | ||
General energy knowledge test (20 true-or-false questions; max. score 20) | 8.5 ± 2.6 ** | 10.2 ± 2.8 | 10.8 ± 3.1 ** | 12.7 ± 2.5 | ||
Willingness-to-act (seven items, seven-point Likert scale, max. score 49) | 41.5 ± 5 ** | 34.9 ± 7.9 | 42.1 ± 4.6 ** | 34.9 ± 9.1 | ||
Evaluation of tools (10 items; seven-point Likert scale; max. score 70) | ||||||
Factsheets | 58.9 ± 5.8 ** | 54.7 ± 6.3 | 60.8 ± 5.5 ** | 55.4 ± 7.3 | ||
Web-tool Riskmeter | 55.4 ± 7.3 * | 53.7 ± 7.4 | 59.0 ± 6.1 ** | 54.1 ± 8.0 | ||
Group discussions | 53.4 ± 6.1 ** | 46.5 ± 6.7 | 51.6 ± 10.3 * | 46.8 ± 9.7 | ||
Whole workshop | 61.2 ± 5.9 ** | 56.1 ± 6.1 | 61.9 ± 7.1 ** | 56.0 ± 7.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubois, A.; Holzer, S.; Xexakis, G.; Cousse, J.; Trutnevyte, E. Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities. Energies 2019, 12, 4231. https://doi.org/10.3390/en12224231
Dubois A, Holzer S, Xexakis G, Cousse J, Trutnevyte E. Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities. Energies. 2019; 12(22):4231. https://doi.org/10.3390/en12224231
Chicago/Turabian StyleDubois, Alexane, Simona Holzer, Georgios Xexakis, Julia Cousse, and Evelina Trutnevyte. 2019. "Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities" Energies 12, no. 22: 4231. https://doi.org/10.3390/en12224231
APA StyleDubois, A., Holzer, S., Xexakis, G., Cousse, J., & Trutnevyte, E. (2019). Informed Citizen Panels on the Swiss Electricity Mix 2035: Longer-Term Evolution of Citizen Preferences and Affect in Two Cities. Energies, 12(22), 4231. https://doi.org/10.3390/en12224231