Fault Current Tracing and Identification via Machine Learning Considering Distributed Energy Resources in Distribution Networks †
Abstract
:1. Introduction
2. Proposed Tracing Method
2.1. Single Power Line Fault Current Threshold
2.2. Current Tracing
3. Support Vector Machine and Current Tracing Kernel
3.1. Binary Classification Problem Formation
3.2. Support Vector Classifiers
3.3. Support Vector Machines
- Polynomial kernel:
- Radial kernel:
3.4. Current Tracing Kernel
4. Simulation Results
4.1. Current Tracing Kernel Results
4.2. SVM Results
5. Discussion
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CTM | Current Tracing Method |
DER | Distributed Energy Resource |
KNN | K-nearest Neighbors |
SVM | Support Vector Machine |
References
- Saad, H.; Peralta, J.; Dennetiere, S.; Mahseredjian, J.; Jatskevich, J.; Martinez, J.; Davoudi, A.; Saeedifard, M.; Sood, V.; Wang, X.; et al. Dynamic averaged and simplified models for MMC-based HVDC transmission systems. IEEE Trans. Power Deliv. 2013, 28, 1723–1730. [Google Scholar] [CrossRef]
- Daryabak, M.; Filizadeh, S.; Jatskevich, J.; Davoudi, A.; Saeedifard, M.; Sood, V.; Martinez, J.; Aliprantis, D.; Cano, J.; Mehrizi-Sani, A. Modeling of LCC-HVDC systems using dynamic phasors. IEEE Trans. Power Deliv. 2014, 29, 1989–1998. [Google Scholar] [CrossRef]
- Runolfsson, T. On the dynamics of three phase electrical energy systems. In Proceedings of the IEEE American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 6827–6832. [Google Scholar]
- Aravinthan, V.; Balachandran, T.; Ben-Idris, M.; Fei, W.; Heidari-Kapourchali, M.; Hettiarachchige-Don, A.; Jiang, J.N.; Lei, H.; Liu, C.C.; Mitra, J.; et al. Reliability modeling considerations for emerging cyber-physical power systems. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 324–330. [Google Scholar]
- Davis, K.R.; Davis, C.M.; Zonouz, S.A.; Bobba, R.B.; Berthier, R.; Garcia, L.; Sauer, P.W. A cyber-physical modeling and assessment framework for power grid infrastructures. IEEE Trans. Smart Grid 2015, 6, 2464–2475. [Google Scholar] [CrossRef]
- Fei, W.; Jiang, J.N.; Wu, D. Impacts of Modeling Errors and Randomness on Topology Identification of Electric Distribution Network. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–6. [Google Scholar]
- Ji, G.; Sharma, D.; Fei, W.; Wu, D.; Jiang, J.N. A Graph-theoretic Method for Identification of Electric Power Distribution System Topology. In Proceedings of the 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 403–407. [Google Scholar]
- Garces, A. A linear three-phase load flow for power distribution systems. IEEE Trans. Power Syst. 2016, 31, 827–828. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, N.; Kang, C.; Xia, Q. A state-independent linear power flow model with accurate estimation of voltage magnitude. IEEE Trans. Power Syst. 2017, 32, 3607–3617. [Google Scholar] [CrossRef]
- Vita, V.; Ekonomou, L.; Christodoulou, C.A. The impact of distributed generation to the lightning protection of modern distribution lines. Energy Syst. 2016, 7, 357–364. [Google Scholar] [CrossRef]
- Fei, W.; Ji, G.; Sharma, D.; Jiang, J.N. A New Traveling Wave Representation for Propagation of Energy Transients in Power Lines from a Quantum Perspective. In Proceedings of the North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018; pp. 1–6. [Google Scholar]
- Pavlatos, C.; Vita, V. Linguistic representation of power system signals. In Electricity Distribution; Springer: Berlin, Germany, 2016; pp. 285–295. [Google Scholar]
- Harrou, F.; Taghezouit, B.; Sun, Y. Improved k NN-Based Monitoring Schemes for Detecting Faults in PV Systems. IEEE J. Photovolt. 2019, 9, 811–821. [Google Scholar] [CrossRef]
- Abid, F.B.; Zgarni, S.; Braham, A. Distinct bearing faults detection in induction motor by a hybrid optimized SWPT and aiNet-DAG SVM. IEEE Trans. Energy Convers. 2018, 33, 1692–1699. [Google Scholar] [CrossRef]
- Pavlatos, C.; Vita, V.; Dimopoulos, A.C.; Ekonomou, L. Transmission lines’ fault detection using syntactic pattern recognition. Energy Syst. 2019, 10, 299–320. [Google Scholar] [CrossRef]
- Guo, M.F.; Zeng, X.D.; Chen, D.Y.; Yang, N.C. Deep-learning-based earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems. IEEE Sens. J. 2017, 18, 1291–1300. [Google Scholar] [CrossRef]
- Park, J.D.; Candelaria, J.; Ma, L.; Dunn, K. DC ring-bus microgrid fault protection and identification of fault location. IEEE Trans. Power Deliv. 2013, 28, 2574–2584. [Google Scholar] [CrossRef]
- Vaseghi, B.; Takorabet, N.; Meibody-Tabar, F. Fault analysis and parameter identification of permanent-magnet motors by the finite-element method. IEEE Trans. Magn. 2009, 45, 3290–3295. [Google Scholar] [CrossRef]
- Cheng, F.; Peng, Y.; Qu, L.; Qiao, W. Current-based fault detection and identification for wind turbine drivetrain gearboxes. IEEE Trans. Ind. Appl. 2016, 53, 878–887. [Google Scholar] [CrossRef]
- Fei, W.; Moses, P. Modeling Power Distribution Grids through Current Tracing Method. In Proceedings of the IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2019; pp. 196–200. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin, Germany, 2013; Volume 112. [Google Scholar]
- Zhang, Y.; Ilic, M.D.; Tonguz, O.K. Mitigating blackouts via smart relays: A machine learning approach. Proc. IEEE 2010, 99, 94–118. [Google Scholar] [CrossRef]
- Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning and Data Mining; Springer Publishing Company, Incorporated: Berlin, Germany, 2017. [Google Scholar]
Bus | Label | Power | |
---|---|---|---|
Active/MW | Reactive/MVar | ||
1 | 1 | −20 | −10 |
2 | −20 | −5 | |
3 | 30 | 15 | |
4 | 20 | 5 | |
2 | 1 | −20 | −10 |
2 | 40 | 15 | |
3 | 30.872544 | 10.771589 |
Bus | Label | Active Current Tracing | Reactive Current Tracing | ||
---|---|---|---|---|---|
Mag | Phase/° | Mag | Phase/° | ||
1 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | |
3 | 5.3677 | 13.5251 | 5.6267 | −76.4749 | |
4 | 3.8535 | 13.5251 | 2.5276 | −76.4749 | |
2 | 1 | 0 | 0 | 0 | 0 |
2 | 3.5366 | 13.5251 | 3.6588 | −76.4749 | |
3 | 5.6847 | 13.5251 | 4.4955 | −76.4749 |
Feature Space | Fault | Normal | |
---|---|---|---|
No Kernel | Predict Fault | tp = 90 | fp = 61 |
Predict Normal | fn = 13 | tn = 136 | |
Polynomial Kernel | Predict Fault | tp = 100 | fp = 51 |
Predict Normal | fn = 19 | tn = 130 | |
Radial Kernel | Predict Fault | tp = 95 | fp = 56 |
Predict Normal | fn = 16 | tn = 133 | |
Current Tracing Kernel | Predict Fault | tp = 145 | fp = 6 |
Predict Normal | fn = 0 | tn = 149 |
Feature Space | Precision | Recall | f1-Score |
---|---|---|---|
No Kernel | 0.596 | 0.874 | 0.709 |
Polynomial Kernel | 0.662 | 0.840 | 0.74 |
Radial Kernel | 0.629 | 0.856 | 0.725 |
Current Tracing Kernel | 0.96 | 1 | 0.98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, W.; Moses, P. Fault Current Tracing and Identification via Machine Learning Considering Distributed Energy Resources in Distribution Networks. Energies 2019, 12, 4333. https://doi.org/10.3390/en12224333
Fei W, Moses P. Fault Current Tracing and Identification via Machine Learning Considering Distributed Energy Resources in Distribution Networks. Energies. 2019; 12(22):4333. https://doi.org/10.3390/en12224333
Chicago/Turabian StyleFei, Wanghao, and Paul Moses. 2019. "Fault Current Tracing and Identification via Machine Learning Considering Distributed Energy Resources in Distribution Networks" Energies 12, no. 22: 4333. https://doi.org/10.3390/en12224333
APA StyleFei, W., & Moses, P. (2019). Fault Current Tracing and Identification via Machine Learning Considering Distributed Energy Resources in Distribution Networks. Energies, 12(22), 4333. https://doi.org/10.3390/en12224333