Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions
Abstract
:1. Introduction
2. Renewable Energy Technologies as Technologies of Engagement
Storage Modes and New energy Practices for Householders
3. Materials and Methods
4. Results
4.1. Mode 1: Individual Energy Autonomy
4.2. Mode 2: Local Energy Community
4.3. Mode 3: Smart Grid Integration
4.4. Mode 4: Virtual Energy Community
4.5. Mode 5: Electricity Market Integration
5. Discussion
5.1. Comparing the Five Storage Modes
5.2. New Collective Material Practices
5.3. The Growing Power of Aggregators and Algorithms in New Material Energy Practices
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crabtree, G. Perspective: The energy-storage revolution. Nature 2015, 526, S92. [Google Scholar] [CrossRef] [PubMed]
- Koirala, B.P.; van Oost, E.; van der Windt, H. Community energy storage: A responsible innovation towards a sustainable energy system? Appl. Energy 2018, 231, 570–585. [Google Scholar] [CrossRef]
- Ruotsalainen, J.; Karjalainen, J.; Child, M.; Heinonen, S. Culture, values, lifestyles, and power in energy futures: A critical peer-to-peer vision for renewable energy. Energy Res. Soc. Sci. 2017, 34, 231–239. [Google Scholar] [CrossRef]
- Devine-Wright, P.; Batel, S.; Aas, O.; Sovacool, B.; Labelle, M.C.; Ruud, A. A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage. Energy Policy 2017, 107, 27–31. [Google Scholar] [CrossRef]
- Parra, D.; Patel, M.K. The nature of combining energy storage applications for residential battery technology. Appl. Energy 2019, 239, 1343–1355. [Google Scholar] [CrossRef]
- Marres, N. Material Participation: Technology, the Environment and Everyday Publics; Springer: New York, NY, USA, 2016. [Google Scholar]
- Ryghaug, M.; Skjølsvold, T.M.; Heidenreich, S. Creating energy citizenship through material participation. Soc. Stud. Sci. 2018, 48, 283–303. [Google Scholar] [CrossRef] [PubMed]
- Geels, F.W. Technological Transitions and System Innovations: A Co-Evolutionary and Socio-Technical Analysis; Edward Elgar Publishing: Cheltenham, UK, 2005. [Google Scholar]
- Walker, G.; Cass, N. Carbon reduction, ‘the public’and renewable energy: Engaging with socio-technical configurations. Area 2007, 39, 458–469. [Google Scholar] [CrossRef]
- Juntunen, J.K.; Hyysalo, S. Renewable micro-generation of heat and electricity—Review on common and missing socio-technical configurations. Renew. Sustain. Energy Rev. 2015, 49, 857–870. [Google Scholar] [CrossRef]
- Rutherford, J.; Coutard, O. Urban Energy Transitions: Places, Processes and Politics of Socio-Technical Change; Sage Publications Sage UK: London, UK, 2014. [Google Scholar]
- Parra, D.; Swierczynski, M.; Stroe, D.I.; Norman, S.A.; Abdon, A.; Worlitschek, J.; O’Doherty, T.; Rodrigues, L.; Gillott, M.; Zhang, X. An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 79, 730–749. [Google Scholar] [CrossRef]
- Ambrosio-Albalá, P.; Upham, P.; Bale, C.S. Purely ornamental? Public perceptions of distributed energy storage in the united kingdom. Energy Res. Soc. Sci. 2019, 48, 139–150. [Google Scholar] [CrossRef]
- Thomas, G.; Demski, C.; Pidgeon, N. Deliberating the social acceptability of energy storage in the UK. Energy Policy 2019, 133, 110908. [Google Scholar] [CrossRef]
- Throndsen, W.; Ryghaug, M. Material participation and the smart grid: Exploring different modes of articulation. Energy Res. Soc. Sci. 2015, 9, 157–165. [Google Scholar] [CrossRef]
- Wolsink, M. The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renew. Sustain. Energy Rev. 2012, 16, 822–835. [Google Scholar] [CrossRef]
- Lammers, I.; Diestelmeier, L. Experimenting with law and governance for decentralized electricity systems: Adjusting regulation to reality? Sustainability 2017, 9, 212. [Google Scholar] [CrossRef]
- Verbong, G.P.; Beemsterboer, S.; Sengers, F. Smart grids or smart users? Involving users in developing a low carbon electricity economy. Energy Policy 2013, 52, 117–125. [Google Scholar] [CrossRef]
- Smale, R.; Spaargaren, G.; van Vliet, B. Householders co-managing energy systems: Space for collaboration? Build. Res. Inf. 2019, 47, 585–597. [Google Scholar] [CrossRef]
- Sonnen. Available online: https://www.sonnenbatterie.de/en/sonnenCommunity (accessed on 24 July 2017).
- Greenspread. Available online: http://www.cityzen-smartcity.eu/ressources/smart-grids/virtual-power-plant/ (accessed on 15 November 2019).
- Rathnayaka, A.D.; Potdar, V.M.; Dillon, T.; Hussain, O.; Kuruppu, S. Goal-oriented prosumer community groups for the smart grid. IEEE Technol. Soc. Mag. 2014, 33, 41–48. [Google Scholar] [CrossRef]
- Barbour, E.; Parra, D.; Awwad, Z.; González, M.C. Community energy storage: A smart choice for the smart grid? Appl. Energy 2018, 212, 489–497. [Google Scholar] [CrossRef]
- Seyfang, G.; Park, J.J.; Smith, A. A thousand flowers blooming? An examination of community energy in the uk. Energy Policy 2013, 61, 977–989. [Google Scholar] [CrossRef]
- Verkade, N.; Höffken, J. Collective energy practices: A practice-based approach to civic energy communities and the energy system. Sustainability 2019, 11, 3230. [Google Scholar] [CrossRef]
- Hodson, M.; Marvin, S.; Bulkeley, H. The intermediary organisation of low carbon cities: A comparative analysis of transitions in greater london and greater manchester. Urban Stud. 2013, 50, 1403–1422. [Google Scholar] [CrossRef]
- Burlinson, A.; Giulietti, M. Non-traditional business models for city-scale energy storage: Evidence from UK case studies. Econ. e Politica Ind. 2018, 45, 215. [Google Scholar] [CrossRef]
- Gillespie, T. The politics of ‘platforms’. New Media Soc. 2010, 12, 347–364. [Google Scholar] [CrossRef]
- Kloppenburg, S.; Boekelo, M. Digital platforms and the future of energy provisioning: Promises and perils for the next phase of the energy transition. Energy Res. Soc. Sci. 2019, 49, 68–73. [Google Scholar] [CrossRef]
Storage Mode | Householder Engagement | Real-World Example | ||
---|---|---|---|---|
Modes | Energy Practices | Relation to Conventional Energy System | Engagement Level | Title |
Individual energy autonomy | Self-consumption | Autonomous | Individual | Sonnenbatterie (DE) |
Local energy community | Self-consumption and sharing | Autonomous | Collective | project ERIC * (UK), SWELL * (UK) |
Smart grid integration | Providing grid services (and possibly self-consumption) | Integrated | Individual/collective | Jouw Energie Moment (NL) |
Virtual energy community | Self-consumption and sharing | Autonomous/Integrated | Collective | SonnenCommunity (DE) |
Market integration | Trading (and possibly self-consumption) | Integrated | Individual/collective | City-zen (NL) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kloppenburg, S.; Smale, R.; Verkade, N. Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions. Energies 2019, 12, 4384. https://doi.org/10.3390/en12224384
Kloppenburg S, Smale R, Verkade N. Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions. Energies. 2019; 12(22):4384. https://doi.org/10.3390/en12224384
Chicago/Turabian StyleKloppenburg, Sanneke, Robin Smale, and Nick Verkade. 2019. "Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions" Energies 12, no. 22: 4384. https://doi.org/10.3390/en12224384
APA StyleKloppenburg, S., Smale, R., & Verkade, N. (2019). Technologies of Engagement: How Battery Storage Technologies Shape Householder Participation in Energy Transitions. Energies, 12(22), 4384. https://doi.org/10.3390/en12224384