Impacts of Organic Structures and Inherent Minerals of Coal on Soot Formation during Pyrolysis
Abstract
:1. Introduction
2. Experiment
2.1. Experimental System
2.2. Samples Analysis
2.3. Coal Samples
3. Results and Discussion
3.1. Particle Yields and Size Distribution
3.2. Interpretation of the FTIR Spectra
3.3. Effect of Coal Organic Structure on Soot Formation
3.4. Effect of Metal Minerals on Soot Formation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seeker, W.; Samuelsen, G.; Heap, M.; Trolinger, J. The thermal decomposition of pulverized coal particles. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1981; Volume 18, pp. 1213–1226. [Google Scholar]
- Pawlyta, M.; Rouzaud, J.-N.; Duber, S. Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural information. Carbon 2015, 84, 479–490. [Google Scholar] [CrossRef]
- Ahluwalia, R.; Im, K. Spectral Radiative Heat Transfer in Coal Furnaces Using a Hybrid Technique; Argonne National Lab: Lemont, IL, USA, 1994. [Google Scholar]
- He, B.; Song, Q.; Chen, C.; Xu, X. Investigations on mechanism of soot formation during combustion and control of soot emission. In Proceedings of the 5th International Symposium on Combustion, Nanjing, China, 23–26 November 2003. [Google Scholar]
- Yuan, L. Experimental Studies on the Formation of Soot and Carbon Nanotubes in Hydrocarbon Diffusion Flames. Ph.D. Thesis, University of Kentucky, Lexington, Kentucky, 2003; p. 496. Available online: https://elibrary.ru/item.asp?id=5265170 (accessed on 20 July 2019).
- Baltrus, J.P.; Wells, A.W.; Fauth, D.J.; Diehl, J.R.; White, C.M. Characterization of carbon concentrates from coal-combustion fly ash. Energy Fuels 2001, 15, 455–462. [Google Scholar] [CrossRef]
- Yong, E.; Guo-li, S.; Ying, Z.; Xu-mei, W. Environmental effects of particulate matter of black carbon. Earth Environ. 2006, 34, 61–64. [Google Scholar]
- Morawska, L.; Zhang, J.J. Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 2002, 49, 1045–1058. [Google Scholar] [CrossRef]
- Gibbs, A.R.; Pooley, F.D. Analysis and interpretation of inorganic mineral particles in" lung" tissues. Thorax 1996, 51, 327–334. [Google Scholar] [CrossRef]
- Bove, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef]
- Fletcher, T.H.; Ma, J.; Rigby, J.R.; Brown, A.L.; Webb, B.W. Soot in coal combustion systems. Prog. Energy Combust. Sci. 1997, 23, 283–301. [Google Scholar] [CrossRef]
- Serio, M.A.; Hamblen, D.G.; Markham, J.R.; Solomon, P.R. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory. Energy Fuels 1987, 1, 138–152. [Google Scholar] [CrossRef]
- Wornat, M.J.; Sarofim, A.F.; Longwell, J.P. Changes in the degree of substitution of polycyclic aromatic compounds from pyrolysis of a high-volatile bituminous coal. Energy Fuels 1987, 1, 431–437. [Google Scholar] [CrossRef]
- Nenniger, R.D. Aerosols Produced from Coal Pyrolysis. Sc.D. Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 1986. Available online: https://worldcat.glgoo.gg363.site/title/aerosols-produced-from-coal-pyrolysis/oclc/16101875&referer=brief_results#borrow (accessed on 15 July 2019).
- Ma, J.; Fletcher, T.H.; Webb, B.W. Effect of flame environment on soot formation in coal combustion. Coal Sci. Technol. Amst 1995, 24, 869. Available online: https://worldcat.glgoo.ggss.site/title/effect-of-flame-environment-on-soot-formation-in-coal-combustion/oclc/180401168&referer=brief_results (accessed on 10 August 2019).
- Ma, J. Soot formation during coal pyrolysis. Ph.D. Thesis, Department of Chemical Engineering, Brigham Young University, Provo, Utah, 1997; p. 171. Available online: https://elibrary.ru/item.asp?id=5412020 (accessed on 18 August 2019).
- Zhang, H. Nitrogen evolution and soot formation during secondary coal pyrolysis. Ph.D. Thesis, Chemical Engineering, Brigham Young University, Provo, Utah, 2001; p. 210. Available online: https://worldcat.glgoo.ggss.site/title/nitrogen-evolution-and-soot-formation-during-secondary-coal-pyrolysis-y-haifeng-zhang/oclc/51596180&referer=brief_results (accessed on 10 September 2019).
- Timothy, L.; Froelich, D.; Sarofim, A.; Beer, J. Soot formation and burnout during the combustion of dispersed pulverized coal particles. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1988; Volume 21, pp. 1141–1148. [Google Scholar]
- Zeng, D.; Hu, S.; Sayre, A.N.; Sarv, H. On the rank-dependence of coal tar secondary reactions. Proc. Combust. Inst. 2011, 33, 1707–1714. [Google Scholar] [CrossRef]
- Solomon, P.R.; Serio, M.A.; Despande, G.V.; Kroo, E. Cross-linking reactions during coal conversion. Energy Fuels 1990, 4, 42–54. [Google Scholar] [CrossRef]
- Hayashi, J.-I.; Norinaga, K.; Yamashita, T.; Chiba, T. Effect of sorbed water on conversion of coal by rapid pyrolysis. Energy Fuels 1999, 13, 611–616. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, Z.; Xiong, J.; Yu, G.; Wang, F. Effects of alkaline metal on coal gasification at pyrolysis and gasification phases. Fuel 2011, 90, 1723–1730. [Google Scholar] [CrossRef]
- Li, C.-Z.; Sathe, C.; Kershaw, J.R.; Pang, Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal. Fuel 2000, 79, 427–438. [Google Scholar] [CrossRef]
- Hayashi, J.-I.; Takahashi, H.; Doi, S.; Kumagai, H.; Chiba, T.; Yoshida, T.; Tsutsumi, A. Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield. Energy Fuels 2000, 14, 400–408. [Google Scholar] [CrossRef]
- Helble, J.J. Mechanisms of ash particle formation and growth during pulverized coal combustion. Ph.D. Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 1987; p. 270. [Google Scholar]
- Di Stasio, S.; LeGarrec, J.-L.; Mitchell, J. Synchrotron radiation studies of additives in combustion, II: soot agglomerate microstructure change by alkali and alkaline-earth metal addition to a partially premixed flame. Energy Fuels 2011, 25, 916–925. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, M.; Zhang, D. Effect of a homogeneous combustion catalyst on the characteristics of diesel soot emitted from a compression ignition engine. Appl. Energy 2014, 113, 751–757. [Google Scholar] [CrossRef]
- Xiao, Z.; Tang, Y.; Zhuo, J.; Yao, Q. Effect of the interaction between sodium and soot on fine particle formation in the early stage of coal combustion. Fuel 2017, 206, 546–554. [Google Scholar] [CrossRef]
- Hayashi, J.-I.; Iwatsuki, M.; Morishita, K.; Tsutsumi, A.; Li, C.-Z.; Chiba, T. Roles of inherent metallic species in secondary reactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor. Fuel 2002, 81, 1977–1987. [Google Scholar] [CrossRef]
- Xu, W.-C.; Tomita, A. The effects of temperature and residence time on the secondary reactions of volatiles from coal pyrolysis. Fuel Process. Technol. 1989, 21, 25–37. [Google Scholar] [CrossRef]
- Nelson, P.F.; Smith, I.W.; Tyler, R.J.; Mackie, J.C. Pyrolysis of coal at high temperatures. Energy Fuels 1988, 2, 391–400. [Google Scholar] [CrossRef]
- Li, C.-Z. Advances in the Science of Victorian Brown Coal; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Chang, G.; Miao, P.; Wang, H.; Wang, L.; Hu, X.; Guo, Q. A synergistic effect during the co-pyrolysis of Nannochloropsis sp. and palm kernel shell for aromatic hydrocarbon production. Energy Convers. Manag. 2018, 173, 545–554. [Google Scholar] [CrossRef]
- Bai, B.; Guo, Q.; Li, Y.; Hu, X.; Ma, J. Catalytic Gasification of Crushed Coke and Changes of Structural Characteristics. Energy Fuel 2018, 32, 3356–3367. [Google Scholar] [CrossRef]
- Bai, Y.; Lv, P.; Li, F.; Song, X.; Su, W.; Yu, G. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam. Energy Convers. Manag. 2019, 184, 172–179. [Google Scholar] [CrossRef]
- Quyn, D.M.; Wu, H.; Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel 2002, 81, 143–149. [Google Scholar] [CrossRef]
- Silva, L.F.; Macias, F.; Oliveira, M.L.; Da Boit, M.K.; Waanders, F. Coal cleaning residues and Fe-minerals implications. Environ. Monit. Assess. 2011, 172, 367–378. [Google Scholar] [CrossRef]
- Sun, H.; Feng, D.; Zhao, Y.; Guo, D.; Ma, Y.; Tan, H.; Sun, S. Characteristics of Gas–Liquid–Solid Products in Corn Straw Gasification: Effect of the Char–Tar–H2O Interaction. Energy Fuels 2019, 33, 9974–9984. [Google Scholar] [CrossRef]
- Solomon, P.R.; Carangelo, R.M. FT-ir analysis of coal: 2. Aliphatic and aromatic hydrogen concentration. Fuel 1988, 67, 949–959. [Google Scholar] [CrossRef]
- Ibarra, J.; Munoz, E.; Moliner, R. FTIR study of the evolution of coal structure during the coalification process. Org. Geochem. 1996, 24, 725–735. [Google Scholar] [CrossRef]
- Cain, J.P.; Gassman, P.L.; Wang, H.; Laskin, A. Micro-FTIR study of soot chemical composition—evidence of aliphatic hydrocarbons on nascent soot surfaces. Phys. Chem. Chem. Phys. 2010, 12, 5206–5218. [Google Scholar] [CrossRef]
- Feng, D.; Zhang, Y.; Zhao, Y.; Sun, S. Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties. Energy 2018, 152, 166–177. [Google Scholar] [CrossRef]
- Feng, D.; Zhao, Y.; Zhang, Y.; Xu, H.; Zhang, L.; Sun, S. Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification. Fuel 2018, 212, 523–532. [Google Scholar] [CrossRef]
- Van Niekerk, D.; Pugmire, R.J.; Solum, M.S.; Painter, P.C.; Mathews, J.P. Structural characterization of vitrinite-rich and inertinite-rich Permian-aged South African bituminous coals. Int. J. Coal Geol. 2008, 76, 290–300. [Google Scholar] [CrossRef]
- Kirchner, U.; Scheer, V.; Vogt, R. FTIR spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of NO2 and HNO3 with soot. J. Phys. Chem. A 2000, 104, 8908–8915. [Google Scholar] [CrossRef]
- Solomon, P.R.; Carangelo, R.M. FTIR analaysis of coal. 1. Techniques and determination of hydroxyl concentrations. Fuel 1982, 61, 663–669. [Google Scholar] [CrossRef]
- Cooke, N.E.; Fuller, O.M.; Gaikwad, R.P. FT-ir spectroscopic analysis of coals and coal extracts. Fuel 1986, 65, 1254–1260. [Google Scholar] [CrossRef]
- Solomon, P.; Hamblen, D.; Carangelo, R. Applications of Fourier Transform IR Spectroscopy in Fuel Science; Advanced Fuel Research, Inc.: East Hartfor, CD, USA, 1982; pp. 77–131. Available online: https://pubs.acs.org/doi/abs/10.1021/bk-1982-0205.ch004 (accessed on 12 September 2019).
- Zhao, Y.; Liu, L.; Qiu, P.-H.; Xie, X.; Chen, X.-Y.; Lin, D.; Sun, S.-Z. Impacts of chemical fractionation on Zhundong coal’s chemical structure and pyrolysis reactivity. Fuel Process. Technol. 2017, 155, 144–152. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, Y.; Qiu, P.; Lin, D.; Qian, J.; Hou, H.; Pei, J. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks. Fuel 2018, 216, 521–530. [Google Scholar] [CrossRef]
- Gomez-Serrano, V.; Fernández-González, M.; Rojas-Cervantes, M.; Alexandre-Franco, M.; Macias-Garcia, A. Carbonization and demineralization of coals: a study by means of FT-IR spectroscopy. Bull. Mater. Sci. 2003, 26, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, X.; Hao, J.; Ma, R.; Guo, Q.; Gao, H.; Bai, H. Nitrogen and Oxygen Codoped Porous Carbon with Superior CO2 Adsorption Performance: A Combined Experimental and DFT Calculation Study. Ind. Eng. Chem. Res. 2019, 58, 13390–13400. [Google Scholar] [CrossRef]
- Feng, D.; Zhao, Y.; Zhang, Y.; Sun, S. Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar. Int. J. Hydrog. Energy 2017, 42, 13070–13084. [Google Scholar] [CrossRef]
- Li, C.-Z.; Nelson, P.F. Fate of aromatic ring systems during thermal cracking of tars in a fluidized-bed reactor. Energy Fuels 1996, 10, 1083–1090. [Google Scholar] [CrossRef]
- Serio, M.A.; Peters, W.A.; Howard, J.B. Kinetics of vapor-phase secondary reactions of prompt coal pyrolysis tars. Ind. Eng. Chem. Res. 1987, 26, 1831–1838. [Google Scholar] [CrossRef]
Coal | Proximate Analysis (wt% on Dry Basis) | Ultimate Analysis (wt% on Dry Basis) | ||||||
---|---|---|---|---|---|---|---|---|
Vd | FCd | Ad | Cd | Hd | Nd | Sd | Od | |
SHR | 34.16% | 63.03% | 2.82% | 83.49% | 4.66% | 0.95% | 0.25% | 7.84% |
NMGR | 36.95% | 47.46% | 15.59% | 67.78% | 3.84% | 0.91% | 1.56% | 10.32% |
YMR | 42.30% | 41.19% | 16.51% | 68.48% | 4.11% | 0.99% | 0.19% | 9.72% |
SLR | 38.00% | 43.90% | 18.10% | 55.53% | 3.46% | 0.90% | 0.89% | 21.12% |
Coal | Na (wt %) | K (wt %) | Ca (wt %) | Mg (wt %) | Fe (wt %) |
---|---|---|---|---|---|
SHR | 0.1047% | 0.0031% | 0.5864% | 0.0277% | 0.4337% |
SHH | 0.0012% | 0.0027% | 0.1475% | 0.0071% | 0.1612% |
NMGR | 0.0562% | 0.0134% | 1.3017% | 0.2242% | 0.4115% |
NMGH | 0.0186% | 0.0088% | 0.0264% | 0.0044% | 0.0974% |
YMR | 0.0534% | 0.0294% | 0.7947% | 0.0832% | 0.7947% |
YMH | 0.0108% | 0.0241% | 0.1082% | 0.0083% | 0.1082% |
SLR | 0.3480% | 0.1721% | 0.5561% | 0.0857% | 0.6537% |
SLH | 0.0172% | 0.1361% | 0.0149% | 0.0126% | 0.1882% |
Coal | A1 | A2 | A3 | A4 | I1 | I2 | I3 | I4 |
---|---|---|---|---|---|---|---|---|
SHH | 1.1168 | 17.7022 | 18.8191 | 45.0022 | 0.00752 | 0.11922 | 0.12674 | 1.96029 |
NMGH | 1.9017 | 8.9387 | 10.8405 | 69.5149 | 0.00970 | 0.04559 | 0.05529 | 2.92457 |
YMH | 6.5528 | 8.7498 | 15.3027 | 111.262 | 0.02144 | 0.02863 | 0.05007 | 2.11378 |
SLH | 8.9766 | 17.1283 | 26.1051 | 130.256 | 0.01658 | 0.03164 | 0.04822 | 1.59243 |
Soot+tar | A1 | A2 | A3 | A4 | A5 | I1 | I2 | I3 | I4 | I5 |
---|---|---|---|---|---|---|---|---|---|---|
SHR | 1.768 | 78.572 | 80.340 | 106.015 | 37.362 | 0.0036 | 0.1614 | 0.1651 | 0.0559 | 2.1030 |
NMGR | 8.789 | 21.253 | 30.042 | 83.906 | 40.218 | 0.0127 | 0.0307 | 0.0433 | 1.6996 | 0.5284 |
YMR | 2.890 | 97.280 | 100.170 | 104.707 | 27.535 | 0.0068 | 0.2293 | 0.2362 | 1.1042 | 3.5329 |
SLR | 10.626 | 8.638 | 19.264 | 39.290 | 26.389 | 0.0288 | 0.0234 | 0.0523 | 5.8755 | 0.3273 |
SHH | 2.011 | 58.482 | 60.493 | 125.826 | 50.348 | 0.0036 | 0.1045 | 0.1081 | 0.2065 | 1.1616 |
NMGH | 9.280 | 88.675 | 97.955 | 97.393 | 42.139 | 0.0200 | 0.1907 | 0.2106 | 1.7437 | 2.1043 |
YMH | 3.972 | 83.911 | 87.883 | 108.799 | 43.444 | 0.0094 | 0.1981 | 0.2075 | 1.6299 | 1.9315 |
SLH | 16.378 | 6.119 | 22.497 | 80.653 | 37.390 | 0.0290 | 0.0108 | 0.0398 | 9.0417 | 0.1637 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.-M.; Du, Q.; Li, D.; Cui, Z.-Y.; Gao, J.-M.; Wu, S.-H. Impacts of Organic Structures and Inherent Minerals of Coal on Soot Formation during Pyrolysis. Energies 2019, 12, 4410. https://doi.org/10.3390/en12234410
Dong H-M, Du Q, Li D, Cui Z-Y, Gao J-M, Wu S-H. Impacts of Organic Structures and Inherent Minerals of Coal on Soot Formation during Pyrolysis. Energies. 2019; 12(23):4410. https://doi.org/10.3390/en12234410
Chicago/Turabian StyleDong, He-Ming, Qian Du, Dun Li, Zhao-Yang Cui, Jian-Min Gao, and Shao-Hua Wu. 2019. "Impacts of Organic Structures and Inherent Minerals of Coal on Soot Formation during Pyrolysis" Energies 12, no. 23: 4410. https://doi.org/10.3390/en12234410
APA StyleDong, H. -M., Du, Q., Li, D., Cui, Z. -Y., Gao, J. -M., & Wu, S. -H. (2019). Impacts of Organic Structures and Inherent Minerals of Coal on Soot Formation during Pyrolysis. Energies, 12(23), 4410. https://doi.org/10.3390/en12234410