On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates
Abstract
:1. Introduction
2. Hybrid Evaporative Pre-Cooling System
3. Mathematical Model
4. Results and Discussion
4.1. Validation of Mathematical Modeling
4.2. Temperature and Humidity Ratio Distributions
4.3. Pre-Cooling Performance
4.4. Psychrometric Illustration of the Hybrid Air Cooling Process
4.5. Cooling Capacity and Energy Saving Potential
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
α | thermal diffusivity (m2/s) |
c | molar concentration (mol/m3) |
cpa | specific heat of moist air (kJ/(kg·°C)) |
D | diffusivity (m2/s) |
h | specific enthalpy (kJ/kg) |
hfg | specific latent heat of water evaporation (kJ/kg) |
k | thermal conductivity (kW/(m·°C)) |
L | length of the channel (m) |
m | mass flow rate of air (kg/s) |
M | molar mass (kg/mol) |
Nu | Nusselt number |
P | pressure (kPa) |
q | heat flux (kW/m2) |
Q | heat transfer rate (kW) |
R | ideal gas constant (J/(K·mol)) |
T | temperature (°C) |
u | velocity in x direction(m/s) |
v | velocity in y direction (m/s) |
ω | humidity ratio (g moisture/kg dry air) |
W | mass transfer rate (kg/s) |
Subscript | |
1 | product air (primary air) |
2 | working air (secondary air) |
a | air |
dew | dew-point temperature |
in | inlet |
j | condensation |
l | latent |
out | outlet |
s | sensible |
sat | saturated |
sur | surface |
w | water |
Abbreviations | |
RH | relative humidity |
PA | product air |
WA | working air |
DBT | dry-bulb temperature |
WBT | wet-bulb temperature |
References
- Do, S.L.; Baltazar, J.C.; Haberl, J. Potential cooling savings from a ground-coupled return-air duct system for residential buildings in hot and humid climates. Energy Build. 2015, 103, 206–215. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J. Achieving better energy-efficient air conditioning—A review of technologies and strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Papakostas, K.T.; Tsamitros, A.; Martinopoulos, G. Validation of modified one-dimensional models simulating the thermal behavior of earth-to-air heat exchangers—Comparative analysis of modelling and experimental results. Geothermics 2019, 82, 1–6. [Google Scholar] [CrossRef]
- Duan, Z.; Zhan, C.; Zhang, X.; Mustafa, M.; Zhao, X.; Alimohammadisagvand, B.; Hasan, A. Indirect evaporative cooling: Past, present and future potentials. Renew. Sustain. Energy Rev. 2012, 16, 6823–6850. [Google Scholar] [CrossRef]
- Cuce, P.M.; Riffat, S. A state of the art review of evaporative cooling systems for building applications. Renew. Sustain. Energy Rev. 2016, 54, 1240–1249. [Google Scholar] [CrossRef]
- Sadighi Dizaji, H.; Hu, E.J.; Chen, L. A comprehensive review of the Maisotsenko-cycle based air conditioning systems. Energy 2018, 156, 725–749. [Google Scholar] [CrossRef]
- Wan, Y.; Ren, C.; Xing, L. An approach to the analysis of heat and mass transfer characteristics in indirect evaporative cooling with counter flow configurations. Int. J. Heat Mass Transf. 2017, 108, 1750–1763. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.M.; Yang, X.; Zhao, X. Two-dimensional numerical study of a heat and mass exchanger for a dew-point evaporative cooler. Energy 2019, 168, 975–988. [Google Scholar] [CrossRef]
- Sadighi Dizaji, H.; Hu, E.J.; Chen, L.; Pourhedayat, S. Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler. Appl. Energy 2018, 228, 2176–2194. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, X.; Zhan, C.; Dong, X.; Chen, H. Energy saving potential of a counter-flow regenerative evaporative cooler for various climates of China: Experiment-based evaluation. Energy Build. 2017, 148, 199–210. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, X.; Liu, J.; Zhang, Q. Dynamic simulation of a hybrid dew point evaporative cooler and vapour compression refrigerated system for a building using EnergyPlus. J. Build. Eng. 2019, 21, 287–301. [Google Scholar] [CrossRef]
- Montazeri, H.; Blocken, B.; Hensen, J.L.M. Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Build. Environ. 2015, 83, 129–141. [Google Scholar] [CrossRef]
- Al-Zubaydi, A.Y.T.; Hong, G. Experimental study of a novel water-spraying configuration in indirect evaporative cooling. Appl. Therm. Eng. 2019, 151, 283–293. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Li, L. Comparative study of the cross-flow heat and mass exchangers for indirect evaporative cooling using numerical methods. Energies 2018, 11, 3374. [Google Scholar] [CrossRef]
- Pandelidis, D.; Anisimov, S.; Rajski, K.; Brychcy, E.; Sidorczyk, M. Performance comparison of the advanced indirect evaporative air coolers. Energy 2017, 135, 138–152. [Google Scholar] [CrossRef]
- Shen, B.; New, J.; Ally, M. Energy and Economics Analyses of Condenser Evaporative Precooling for Various Climates, Buildings and Refrigerants. Energies 2019, 12, 2079. [Google Scholar] [CrossRef]
- Jia, L.; Liu, J.; Wang, C.; Cao, X.; Zhang, Z. Study of the thermal performance of a novel dew point evaporative cooler. Appl. Therm. Eng. 2019, 160, 114069. [Google Scholar] [CrossRef]
- He, S.; Xu, Y.; Zhang, G.; Hooman, K.; Gao, M. Selection of wetted media for pre-cooling of air entering natural draft dry cooling towers. Appl. Therm. Eng. 2017, 114, 857–863. [Google Scholar] [CrossRef]
- He, S.; Zhang, Z.; Gao, M.; Sun, F.; Lucas, M.; Hooman, K. Experimental study on the air-side flow resistance of different water collecting devices for wet cooling tower applications. J. Wind Eng. Ind. Aerodyn. 2019, 190, 53–60. [Google Scholar] [CrossRef]
- Zhu, G.; Chow, T.T.; Lee, C.K. Performance analysis of counter-flow regenerative heat and mass exchanger for indirect evaporative cooling based on data-driven model. Energy Build. 2017, 155, 503–512. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Aydin, D.; Zhang, X.; Ding, Y.; Reay, D.; Law, R.; Riffat, S. Experimental investigations of polymer hollow fibre integrated evaporative cooling system with the fibre bundles in a spindle shape. Energy Build. 2017, 154, 166–174. [Google Scholar] [CrossRef]
- Lim, K.; An, H.; Wang, P.; Liu, G.; Yu, S. Theoretical and Computational Analysis on Double-End Submerged Hollow Fibre Membrane Modules. Energies 2018, 11, 1042. [Google Scholar] [CrossRef]
- Tariq, R.; Sohani, A.; Xamán, J.; Sayyaadi, H.; Bassam, A.; Tzuc, O.M. Multi-objective optimization for the best possible thermal, electrical and overall energy performance of a novel perforated-type regenerative evaporative humidifier. Energy Convers. Manag. 2019, 198, 111802. [Google Scholar] [CrossRef]
- De Antonellis, S.; Joppolo, C.M.; Liberati, P. Performance measurement of a cross-flow indirect evaporative cooler: Effect of water nozzles and airflows arrangement. Energy Build. 2019, 184, 114–121. [Google Scholar] [CrossRef]
- Cui, X.; Islam, M.R.; Mohan, B.; Chua, K.J. Theoretical analysis of a liquid desiccant based indirect evaporative cooling system. Energy 2016, 95, 303–312. [Google Scholar] [CrossRef]
- Bui, D.T.; Kum Ja, M.; Gordon, J.M.; Ng, K.C.; Chua, K.J. A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification. Energy 2017, 132, 106–115. [Google Scholar] [CrossRef]
- Islam, M.R.; Jahangeer, K.A.; Chua, K.J. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems. Energy 2015, 87, 390–399. [Google Scholar] [CrossRef]
- Heidari, A.; Roshandel, R.; Vakiloroaya, V. An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates. Energy Convers. Manag. 2019, 185, 396–409. [Google Scholar] [CrossRef]
- Zanchini, E.; Naldi, C. Energy saving obtainable by applying a commercially available M-cycle evaporative cooling system to the air conditioning of an office building in North Italy. Energy 2019, 179, 975–988. [Google Scholar] [CrossRef]
- Jang, J.; Kang, E.C.; Lee, H.K.; Jeong, S.; Park, S.R. Energy demand comparison between hollow fiber membrane based dehumidification and evaporative cooling dehumidification using trnsys. Energies 2018, 11, 1181. [Google Scholar] [CrossRef]
- Narayanan, R.; Halawa, E.; Jain, S. Dehumidification Potential of a Solid Desiccant Based Evaporative Cooling System with an Enthalpy Exchanger Operating in Subtropical and Tropical Climates. Energies 2019, 12, 2704. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate. Energy Convers. Manag. 2015, 102, 140–150. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Luo, Y. Indirect evaporative cooler considering condensation from primary air: Model development and parameter analysis. Build. Environ. 2016, 95, 330–345. [Google Scholar] [CrossRef]
- Takarada, M.; Ikeda, S.; Izumi, M. Forced convection, and heat and mass transfer from humid air under condensation conditions. In Proceedings of the Proceedings of Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, Belgium, 2–6 June 1997; pp. 1103–1116. [Google Scholar]
- Volchkov, E.P.; Terekhov, V.V.; Terekhov, V.I. A numerical study of boundary-layer heat and mass transfer in a forced flow of humid air with surface steam condensation. Int. J. Heat Mass Transf. 2004, 47, 1473–1481. [Google Scholar] [CrossRef]
- Cui, X.; Chua, K.J.; Islam, M.R.; Yang, W.M. Fundamental formulation of a modified LMTD method to study indirect evaporative heat exchangers. Energy Convers. Manag. 2014, 88, 372–381. [Google Scholar] [CrossRef]
- COMSOL Multiphysics Reference Manual; COMSOL 4.3b.; COMSOL, Inc.: Burlington, MA, USA, 2013.
- Cui, X.; Islam, M.R.; Mohan, B.; Chua, K.J. Developing a performance correlation for counter-flow regenerative indirect evaporative heat exchangers with experimental validation. Appl. Therm. Eng. 2016, 108, 774–784. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Handbook-Fundamentals; ASHRAE Inc.: Atalanta, GA, USA, 2009. [Google Scholar]
- Jradi, M.; Riffat, S. Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings. Appl. Energy 2014, 132, 524–535. [Google Scholar] [CrossRef]
Locations | Latitude and Longitude | Climate Zone Number and Name | Cooling Design Day | Design Conditions | |
---|---|---|---|---|---|
WB (°C) | MCDB (°C) | ||||
Singapore | 1.37° N, 103.98° E | 1, Very Hot-Humid | 21 June | 27.7 | 30.7 |
Cairo | 30.13° N, 31.40° E | 2, Hot-Dry | 21 July | 24.9 | 31.8 |
Firenze | 43.80° N, 11.20° E | 3, Warm-Humid | 21 July | 24.6 | 31.8 |
Athinai | 37.90° N, 23.73° E | 3, Warm-Dry | 21 August | 24.4 | 31 |
Xi’an | 34.30° N, 108.93° E | 4, Mixed-Dry | 21 July | 26.4 | 32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Sun, L.; Zhang, S.; Jin, L. On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates. Energies 2019, 12, 4419. https://doi.org/10.3390/en12234419
Cui X, Sun L, Zhang S, Jin L. On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates. Energies. 2019; 12(23):4419. https://doi.org/10.3390/en12234419
Chicago/Turabian StyleCui, Xin, Le Sun, Sicong Zhang, and Liwen Jin. 2019. "On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates" Energies 12, no. 23: 4419. https://doi.org/10.3390/en12234419
APA StyleCui, X., Sun, L., Zhang, S., & Jin, L. (2019). On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates. Energies, 12(23), 4419. https://doi.org/10.3390/en12234419