Inhibition Effect of Kinetic Hydrate Inhibitors on the Growth of Methane Hydrate in Gas–Liquid Phase Separation State
Abstract
:1. Introduction
2. Simulation Configuration and Calculation Method
3. Results and Discussion
3.1. Effects of Kinetic Inhibitors Located at the Gas–Liquid Phase Interface
3.2. Effects of Kinetic Inhibitors Located at the Solid-Liquid Phase Interface
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kelland, M.A. A Review of kinetic hydrate inhibitors from an environmental perspective. Energy Fuels 2018, 32, 12001–12012. [Google Scholar] [CrossRef]
- JR, S.E. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–359. [Google Scholar]
- Kelland, M.A. History of the development of low dosage hydrate inhibitors. Energy Fuels 2006, 20, 825–847. [Google Scholar] [CrossRef]
- Perrin, A.; Musa, O.M.; Steed, J.W. The chemistry of low dosage clathrate hydrate inhibitors. Chem. Soc. Rev. 2013, 42, 1996–2015. [Google Scholar] [CrossRef]
- Villano, L.D.; Kelland, M.A.; Miyake, G.M.; Chen, E.Y.X. Effect of polymer tacticity on the performance of poly (N,N-dialkylacrylamide) s as kinetic hydrate inhibitors. Energy Fuels 2010, 24, 2554–2562. [Google Scholar] [CrossRef]
- Ke, W.; Svartaas, T.M.; Kvaloy, J.T.; Kosberg, B.R. Inhibition-promotion: Dual effects of polyvinylpyrrolidone (PVP) on structure-II hydrate nucleation. Energy Fuels 2016, 30, 7646–7655. [Google Scholar] [CrossRef]
- Xiao, C.; Adidharma, H. Dual functionin hibitors for methane hydrate. Chem. Eng. Sci. 2009, 64, 1522–1527. [Google Scholar] [CrossRef]
- Ajiro, H.; Takemoto, Y.; Akashi, M.; Chua, P.C.; Kelland, M.A. Study of the kinetic hydrate inhibitor performance of a series of Poly (N-alkyl-N-vinylacetamide) s. Energy Fuels 2010, 24, 6400–6410. [Google Scholar] [CrossRef]
- Nakarit, C.; Kelland, M.A.; Liu, D.; Chen, E.Y.X. Cationic kinetic hydrate inhibitors and the effect on performance of incorporating cationic monomers into N-vinyl lactam copolymers. Chem. Eng. Sci. 2013, 102, 424–431. [Google Scholar] [CrossRef]
- Kelland, M.A.; Kvaestad, A.H.; Astad, E.L. Tetrahydrofuran hydrate crystal growth inhibition by trialkylamine oxides and synergism with the gas kinetic hydrate inhibitor poly (N-vinyl caprolactam). Energy Fuels 2012, 26, 4454–4464. [Google Scholar] [CrossRef]
- Pei, C.C.; Kelland, M.A. Tetra (iso-hexyl) ammonium bromide-the most powerful quaternary ammonium-based tetrahydrofuran crystal growth inhibitor and synergist with polyvinylcaprolactam kinetic gas hydrate inhibitor. Energy Fuels 2012, 26, 1160–1168. [Google Scholar]
- Reyes, F.T.; Kelland, M.A.; Kumar, N.; Jia, L. First investigation of the kinetic hydrate inhibition of a series of poly (β-peptoid) s on structure II gas hydrate, including the comparison of block and random copolymers. Energy Fuels 2015, 29, 695–701. [Google Scholar] [CrossRef]
- Kelland, M.A.; Abrahamsen, E.; Ajiro, H.; Akashi, M. Kinetic hydrate inhibition with N-alkyl-N-vinylformamide polymers: Comparison of polymers to n-propyl and isopropyl groups. Energy Fuels 2015, 29, 4941–4946. [Google Scholar] [CrossRef]
- Long, J.; Lederhos, J.; Sum, A.; Christiansen, R.L.; Sloan, E.D. Kinetic inhibitors of natural gas hydrates. In Proceedings of the 73rd Annual GPA Convention, New Orleans, LA, USA, 7–9 March 1994. [Google Scholar]
- Qin, H.B.; Sun, Z.F.; Wang, X.Q.; Yang, J.L.; Sun, C.Y.; Liu, B.; Yang, L.Y.; Chen, G.J. Synthesis and evaluation of two new kinetic hydrate inhibitors. Energy Fuels 2015, 29, 7135–7141. [Google Scholar] [CrossRef]
- Qin, H.B.; Sun, C.Y.; Sun, Z.F.; Liu, B.; Chen, G.J. Relationship between the interfacial tension and inhibition performance of hydrate inhibitors. Chem. Eng. Sci. 2016, 148, 182–189. [Google Scholar] [CrossRef]
- Oluwunmi, P.A.; Finney, A.R.; Rodger, P.M. Molecular dynamics screening for new kinetic inhibitors of methane hydrate. Can. J. Chem. 2015, 93, 1043–1049. [Google Scholar] [CrossRef]
- Yagasaki, T.; Matsumoto, M.; Tanaka, H. Adsorption mechanism of inhibitor and guest molecules on the surface of gas hydrates. J. Am. Chem. Soc. 2015, 137, 12079–12085. [Google Scholar] [CrossRef]
- Yagasaki, T.; Matsumoto, M.; Tanaka, H. Adsorption of kinetic hydrate inhibitors on growing surfaces: A molecular dynamics study. J. Phys. Chem. B. 2018, 122, 3396–3406. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, F.; Qin, H.B.; Liu, B.; Sun, C.Y.; Chen, G.J. Molecular dynamics method to simulate the process of hydrate growth in the presence/absence of KHIs. Chem. Eng. Sci. 2017, 164, 307–312. [Google Scholar] [CrossRef]
- Li, Z.; Liao, K.; Qin, H.B.; Chen, J.L.; Ren, L.L.; Li, F.G.; Zhang, X.R.; Liu, B.; Chen, G.J. The gas-adsorption mechanism of kinetic hydrate inhibitors. AIChE J. 2019, 65, e16681. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Dauber-Osguthorpe, P.; Roberts, V.A.; Osguthorpe, D.J.; Wolff, J.; Genest, M.; Hagler, A.T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Struct. Funct. Bioinform. 2010, 4, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–936. [Google Scholar] [CrossRef]
- Cao, Z.T.; Tester, J.W.; Sparks, K.A.; Trout, B.L. Molecular computations using robust hydrocarbon-water potentials for predicting gas hydrate phase equilibria. J. Phys. Chem. B 2001, 105, 10950–10960. [Google Scholar] [CrossRef]
- Cao, Z.T.; Tester, J.W.; Trout, B.L. Computation of the methane-water potential energy hypersurface via ab initio methods. J. Chem. Phys. 2001, 115, 2550–2559. [Google Scholar] [CrossRef]
- Matsumoto, M.; Baba, A.; Ohmine, I. Topological building blocks of hydrogen bond network in water. J. Chem. Phys. 2007, 127, 134504. [Google Scholar] [CrossRef]
- Jacobson, L.C.; Hujo, W.; Molinero, V. Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water. J. Phys. Chem. B 2009, 113, 10298–10307. [Google Scholar] [CrossRef]
- Nada, H.; Furukawa, Y. Antifreeze proteins: Computer simulation studies on the mechanism of ice growth inhibition. Polym. J. 2012, 44, 690–698. [Google Scholar] [CrossRef]
- Raymond, J.A.; DeVries, A.L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA 1977, 74, 2589–2593. [Google Scholar] [CrossRef]
- Shtukenberg, A.G.; Ward, M.D.; Kahr, B. Crystal growth with macromolecular additives. Chem. Rev. 2017, 117, 14042–14090. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Wang, L.; Li, Z.; Liu, B.; Chen, G. Inhibition Effect of Kinetic Hydrate Inhibitors on the Growth of Methane Hydrate in Gas–Liquid Phase Separation State. Energies 2019, 12, 4482. https://doi.org/10.3390/en12234482
Cheng L, Wang L, Li Z, Liu B, Chen G. Inhibition Effect of Kinetic Hydrate Inhibitors on the Growth of Methane Hydrate in Gas–Liquid Phase Separation State. Energies. 2019; 12(23):4482. https://doi.org/10.3390/en12234482
Chicago/Turabian StyleCheng, Liwei, Limin Wang, Zhi Li, Bei Liu, and Guangjin Chen. 2019. "Inhibition Effect of Kinetic Hydrate Inhibitors on the Growth of Methane Hydrate in Gas–Liquid Phase Separation State" Energies 12, no. 23: 4482. https://doi.org/10.3390/en12234482
APA StyleCheng, L., Wang, L., Li, Z., Liu, B., & Chen, G. (2019). Inhibition Effect of Kinetic Hydrate Inhibitors on the Growth of Methane Hydrate in Gas–Liquid Phase Separation State. Energies, 12(23), 4482. https://doi.org/10.3390/en12234482