A Widespread Review of Smart Grids Towards Smart Cities
Abstract
:1. Introduction
2. The Importance of Smart Grids in Developing Smart Cities
3. Micro/Nano Grids
4. Solar Energy in Smart Grids
5. Wind Energy in Smart Grids
6. Energy Storage in Smart Grids
7. Smart Water Grids
8. European Projects/Case Studies
9. Future Works
10. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Gaviano, A.; Weber, K.; Dirmeier, C. Challenges and integration of PV and wind energy facilities from a smart grid point of view. Energy Procedia 2012, 25, 118–125. [Google Scholar] [CrossRef]
- Paaso, A.; Kushner, D.; Bahramirad, S.; Khodaei, A. Grid Modernization Is Paving the Way for Building Smarter Cities [Technology Leaders]. IEEE Electrif. Mag. 2018, 6, 6–108. [Google Scholar] [CrossRef]
- Washburn, D.; Sindhu, U.; Balaouras, S.; Dines, R.A.; Hayes, N.; Nelson, L.E. Helping CIOs understand smart city initiatives. Growth 2009, 17, 1–17. [Google Scholar]
- Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient Energy Management for the Internet of Things in Smart Cities. IEEE Commun. Mag. 2017, 55, 84–91. [Google Scholar] [CrossRef]
- Hollands, R.G. Will the real smart city please stand up? City 2008, 12, 303–320. [Google Scholar] [CrossRef]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for Smarter Cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Choppali, U.; Kougianos, E. Everything you wanted to know about smart cities: The Internet of things is the backbone. IEEE Consum. Electron. Mag. 2016, 5, 60–70. [Google Scholar] [CrossRef]
- Curiale, M. From smart grids to smart city. In Proceedings of the 2014 Saudi Arabia Smart Grid Conference, SASG, Jeddah, Saudi Arabia, 14–17 December 2014. [Google Scholar]
- Nam, T.; Pardo, T.A. Smart city as urban innovation: Focusing on management, policy, and context. In Proceedings of the 5th International Conference on Theory and Practice of Electronic Governance, ACM, Tallinn, Estonia, 26–29 September 2011; pp. 185–194. [Google Scholar]
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef]
- McCluer, M. Cleantech 2009: Innovations, Opportunities, and Building Business; Dept. Energy, Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2010.
- Wiser, R.; Bolinger, M. 2009 Wind Technologies Market Report. 2009. Available online: https://ilsr.org/2009-wind-technologies-market-report/ (accessed on 1 November 2019).
- Pratt, R.G.; Balducci, P.J.; Gerkensmeyer, C.; Katipamula, S.; Kintner-Meyer, M.C.; Sanquist, T.F.; Secrest, T.J. The smart grid: An estimation of the energy and CO2 benefits. In Smart Grid Estim. Energy CO2 Benefits; PNNL-19112, Revision 1; Pacific Northwest National Lab.(PNNL): Richland, WA, USA, 2010. [Google Scholar]
- Smart Grid: Enabler of the New Energy Economy; A report by Electricity Advisory Committee. 2008. Available online: https://www.energy.gov/oe/downloads/smart-grid-enabler-new-energy-economy (accessed on 1 November 2019).
- Parham, K.; Farmanbar, M.; Rong, C.; Arild, O. Assessing the importance of energy management in smart homes. In Proceedings of the 4th International Conference on Viable Energy Trends (InVEnT-2019), Istanbul, Turkey, 26–28 April 2019. [Google Scholar]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart Grid and Smart Homes: Key Players and Pilot Projects. IEEE Ind. Electron. Mag. 2012, 6, 18–34. [Google Scholar] [CrossRef]
- Masera, M.; Bompard, E.F.; Profumo, F.; Hadjsaid, N. Smart (Electricity) Grids for Smart Cities: Assessing Roles and Societal Impacts. Proc. IEEE 2018, 106, 613–625. [Google Scholar] [CrossRef]
- Suryadevara, N.K.; Biswal, G.R. Smart Plugs: Paradigms and Applications in the Smart City-and-Smart Grid. Energies 2019, 12, 1957. [Google Scholar] [CrossRef]
- Hernandez-Callejo, L. A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids. Energies 2019, 12, 1630. [Google Scholar] [CrossRef]
- Uslar, M.; Rohjans, S.; Neureiter, C.; Andren, F.P.; Velasquez, J.; Steinbrink, C.; Efthymiou, V.; Migliavacca, G.; Horsmanheimo, S.; Brunner, H.; et al. Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective. Energies 2019, 12, 258. [Google Scholar] [CrossRef]
- Espe, E.; Potdar, V.; Chang, E. Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions. Energies 2018, 11, 2528. [Google Scholar] [CrossRef]
- Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions. Energies 2018, 11, 596. [Google Scholar] [CrossRef]
- Chen, T. Smart grids, smart cities need better networks. IEEE Netw. 2010, 24, 2–3. [Google Scholar] [CrossRef]
- Dietrich, D.; Bruckner, D.; Zucker, G.; Palensky, P. Communication and Computation in Buildings: A Short Introduction and Overview. IEEE Trans. Ind. Electron. 2010, 57, 3577–3584. [Google Scholar] [CrossRef]
- Yu, X.; Cecati, C.; Dillon, T.; Simões, M.G. The New Frontier of Smart Grids. IEEE Ind. Electron. Mag. 2011, 5, 49–63. [Google Scholar] [CrossRef]
- Liserre, M.; Sauter, T.; Hung, J.Y. Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid Through Industrial Electronics. IEEE Ind. Electron. Mag. 2010, 4, 18–37. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Triangulum. Available online: https://www.triangulum-project.eu/ (accessed on 8 April 2019).
- Triangulum Internasjonal Konferanse, Stavanger Kommune. Available online: https://www.stavanger.kommune.no/samfunnsutvikling/prosjekter/triangulum/ (accessed on 20 September 2019).
- Li, M.; Xiao, H.; Gao, W.; Li, L. Smart grid supports the future intelligent city development. In Proceedings of the 28th Chinese Control and Decision Conference, CCDC, Yinchuan, China, 28–30 May 2016; pp. 6128–6131. [Google Scholar]
- Naik, M.B.; Kumar, P.; Majhi, S. Small-scale solar plants coupled with smart public transport system and its coordination with the grid. IET Electr. Syst. Transp. 2017, 7, 135–144. [Google Scholar] [CrossRef]
- Hernandez, L.; Baladron, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J.; Massana, J. A Survey on Electric Power Demand Forecasting: Future Trends in Smart Grids, Microgrids and Smart Buildings. IEEE Commun. Surv. Tutor. 2014, 16, 1460–1495. [Google Scholar] [CrossRef]
- Coelho, V.N.; Coelho, I.M.; Coelho, B.N.; de Oliveira, G.C.; Barbosa, A.C.; Pereira, L.; de Freitas, A.; Santos, H.G.; Ochi, L.S.; Guimarães, F.G. A communitarian microgrid storage planning system inside the scope of a smart city. Appl. Energy 2017, 201, 371–381. [Google Scholar] [CrossRef]
- Liu, N.; Chen, Q.; Liu, J.; Lu, X.; Li, P.; Lei, J.; Zhang, J. A Heuristic Operation Strategy for Commercial Building Microgrids Containing EVs and PV System. IEEE Trans. Ind. Electron. 2015, 62, 2560–2570. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M.; Aminifar, F.; Alabdulwahab, A.; Al-Turki, Y. Networked Microgrids for Enhancing the Power System Resilience. Proc. IEEE 2017, 105, 1289–1310. [Google Scholar] [CrossRef]
- Puianu, M.; Flangea, R.; Arghira, N.; Iliescu, S.S. Microgrid simulation for smart city. In Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017; pp. 607–611. [Google Scholar]
- Pirbazari, A.M.; Chakravorty, A.; Rong, C. Evaluating Feature Selection Methods for Short-Term Load Forecasting. In Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp), Kyoto, Japan, 27 February–2 March 2019; pp. 1–8. [Google Scholar]
- Bulkeley, H.; McGuirk, P.M.; Dowling, R. Making a smart city for the smart grid? The urban material politics of actualising smart electricity networks. Environ. Plan. A 2016, 48, 1709–1726. [Google Scholar] [CrossRef]
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Suryanarayanan, S.; Kyriakides, E. Microgrids: An Emerging Technology to Enhance Power System Reliability. Proc. IEEE Smart Grid 2017. [Google Scholar]
- Kumar, N.; Vasilakos, A.V.; Rodrigues, J.J.P.C. A Multi-Tenant Cloud-Based DC Nano Grid for Self-Sustained Smart Buildings in Smart Cities. IEEE Commun. Mag. 2017, 55, 14–21. [Google Scholar] [CrossRef]
- Jiang, Q.; Xue, M.; Geng, G. Energy Management of Microgrid in Grid-Connected and Stand-Alone Modes. IEEE Trans. Power Syst. 2013, 28, 3380–3389. [Google Scholar] [CrossRef]
- Entchev, E.; Yang, L.; Ghorab, M.; Lee, E.J. Performance analysis of a hybrid renewable microgeneration system in load sharing applications. Appl. Therm. Eng. 2014, 71, 697–704. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, B.; Shahani, D.T.; Jain, C. Grid-interfaced solar photovoltaic smart building with bidirectional power flow between grid and electric vehicle with improved power quality. Electr. Power Compon. Syst. 2016, 44, 480–494. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Zhan, L.; Gracia, J.R.; King, T.J.; Liu, Y. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping. Int. J. Energy Res. 2016, 40, 353–361. [Google Scholar] [CrossRef]
- Wandhare, R.G.; Agarwal, V. Novel Stability Enhancing Control Strategy for Centralized PV-Grid Systems for Smart Grid Applications. IEEE Trans. Smart Grid 2014, 5, 1389–1396. [Google Scholar] [CrossRef]
- Wandhare, R.G.; Agarwal, V. Reactive Power Capacity Enhancement of a PV-Grid System to Increase PV Penetration Level in Smart Grid Scenario. IEEE Trans. Smart Grid 2014, 5, 1845–1854. [Google Scholar] [CrossRef]
- Kanchev, H.; Lu, D.; Colas, F.; Lazarov, V.; Francois, B. Energy Management and Operational Planning of a Microgrid with a PV-Based Active Generator for Smart Grid Applications. IEEE Trans. Ind. Electron. 2011, 58, 4583–4592. [Google Scholar] [CrossRef] [Green Version]
- Choudar, A.; Boukhetala, D.; Barkat, S.; Brucker, J.-M. A local energy management of a hybrid PV-storage based distributed generation for microgrids. Energy Convers. Manag. 2015, 90, 21–33. [Google Scholar] [CrossRef]
- Rodriguez, C.T.; Fuente, D.V.D.L.; Garcera, G.; Figueres, E.; Moreno, J.A.G. Reconfigurable Control Scheme for a PV Microinverter Working in Both Grid-Connected and Island Modes. IEEE Trans. Ind. Electron. 2013, 60, 1582–1595. [Google Scholar] [CrossRef]
- Sechilariu, M.; Wang, B.; Locment, F. Building Integrated Photovoltaic System with Energy Storage and Smart Grid Communication. IEEE Trans. Ind. Electron. 2013, 60, 1607–1618. [Google Scholar] [CrossRef]
- Byeon, G.; Yoon, T.; Oh, S.; Jang, G. Energy Management Strategy of the DC Distribution System in Buildings Using the EV Service Model. IEEE Trans. Power Electron. 2013, 28, 1544–1554. [Google Scholar] [CrossRef]
- Kanchev, H.; Colas, F.; Lazarov, V.; Francois, B. Emission Reduction and Economical Optimization of an Urban Microgrid Operation Including Dispatched PV-Based Active Generators. IEEE Trans. Sustain. Energy 2014, 5, 1397–1405. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, N.; Zhang, J.; Tushar, W.; Yuen, C. Energy Management for Joint Operation of CHP and PV Prosumers Inside a Grid-Connected Microgrid: A Game Theoretic Approach. IEEE Trans. Ind. Inform. 2016, 12, 1930–1942. [Google Scholar] [CrossRef]
- Guichi, A.; Talha, A.; Berkouk, E.M.; Mekhilef, S. Energy management and performance evaluation of grid connected PV-battery hybrid system with inherent control scheme. Sustain. Cities Soc. 2018, 41, 490–504. [Google Scholar] [CrossRef]
- Glinkowski, M.; Hou, J.; Rackliffe, G. Advances in wind energy technologies in the context of smart grid. Proc. IEEE 2011, 99, 1083–1097. [Google Scholar] [CrossRef]
- Invade—The new Horizon 2020 EU Project. Available online: https://h2020invade.eu/ (accessed on 1 November 2019).
- Xu, Z.; Gordon, M.; Lind, M.; Østergaard, J. Towards a Danish power system with 50% wind—Smart grids activities in Denmark. In Proceedings of the 2009 IEEE Power and Energy Society General Meeting, PES ‘09, Calgary, AB, Canada, 26–30 July 2009. [Google Scholar]
- Guo, F.; Wen, C.; Mao, J.; Song, Y.D. Distributed Economic Dispatch for Smart Grids with Random Wind Power. IEEE Trans. Smart Grid 2016, 7, 1572–1583. [Google Scholar] [CrossRef]
- Ghofrani, M.; Arabali, A.; Etezadi-Amoli, M.; Fadali, M.S. Smart scheduling and cost-benefit analysis of grid-enabled electric vehicles for wind power integration. IEEE Trans. Smart Grid 2014, 5, 2306–2313. [Google Scholar] [CrossRef]
- He, M.; Murugesan, S.; Zhang, J. Multiple timescale dispatch and scheduling for stochastic reliability in smart grids with wind generation integration. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 461–465. [Google Scholar]
- He, M.; Murugesan, S.; Zhang, J. A multi-timescale scheduling approach for stochastic reliability in smart grids with wind generation and opportunistic demand. IEEE Trans. Smart Grid 2013, 4, 521–529. [Google Scholar] [CrossRef]
- Broeer, T.; Fuller, J.; Tuffner, F.; Chassin, D.; Djilali, N. Modeling framework and validation of a smart grid and demand response system for wind power integration. Appl. Energy 2014, 113, 199–207. [Google Scholar] [CrossRef]
- Batista, N.C.; Melício, R.; Matias, J.C.O.; Catalão, J.P.S. Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid. Energy 2013, 49, 306–315. [Google Scholar] [CrossRef]
- Vachirasricirikul, S.; Ngamroo, I. Robust LFC in a smart grid with wind power penetration by coordinated V2G control and frequency controller. IEEE Trans. Smart Grid 2014, 5, 371–380. [Google Scholar] [CrossRef]
- Lindley, D. Smart grids: The energy storage problem. Nature 2010, 463, 18–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, B.P.; Sandberg, C. The role of energy storage in development of smart grids. Proc. IEEE 2011, 99, 1139–1144. [Google Scholar] [CrossRef]
- Khan, N.; Dilshad, S.; Khalid, R.; Kalair, A.R.; Abas, N. Review of energy storage and transportation of energy. Energy Storage 2019, 1, e49. [Google Scholar] [CrossRef]
- Bjelovuk, G.; Nourai, A. Community Energy Storage (CES) and the Smart Grid. Presented at the ESA Presentation, May 2009. Available online: www.aeptechcentral.com/ces (accessed on 1 November 2019).
- Lee, C.K.; Hui, S.Y.R. Reduction of energy storage requirements in future smart grid using electric springs. IEEE Trans. Smart Grid 2013, 4, 1282–1288. [Google Scholar] [CrossRef]
- Venkataramani, G.; Parankusam, P.; Ramalingam, V.; Wang, J. A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renew. Sustain. Energy Rev. 2016, 62, 895–907. [Google Scholar] [CrossRef]
- Koutsopoulos, I.; Hatzi, V.; Tassiulas, L. Optimal energy storage control policies for the smart power grid. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications, SmartGridComm, Brussels, Belgium, 17–20 October 2011; pp. 475–480. [Google Scholar]
- Nguyen, C.P.; Flueck, A.J. Agent based restoration with distributed energy storage support in smart grids. IEEE Trans. Smart Grid 2012, 3, 1029–1038. [Google Scholar] [CrossRef]
- Ivanović, Z.R.; Adžić, E.M.; Vekić, M.S.; Grabić, S.U.; Čelanović, N.L.; Katić, V.A. HIL evaluation of power flow control strategies for energy storage connected to smart grid under unbalanced conditions. IEEE Trans. Power Electron. 2012, 27, 4699–4710. [Google Scholar] [CrossRef]
- Mohd, A.; Ortjohann, E.; Schmelter, A.; Hamsic, N.; Morton, D. Challenges in integrating distributed energy storage systems into future smart grid. In Proceedings of the IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 1627–1632. [Google Scholar]
- Sbordone, D.; Bertini, I.; Di Pietra, B.; Falvo, M.C.; Genovese, A.; Martirano, L. EV fast charging stations and energy storage technologies: A real implementation in the smart micro grid paradigm. Electr. Power Syst. Res. 2015, 120, 96–108. [Google Scholar] [CrossRef]
- Pang, C.; Dutta, P.; Kezunovic, M. BEVs/PHEVs as dispersed energy storage for V2B uses in the smart grid. IEEE Trans. Smart Grid 2012, 3, 473–482. [Google Scholar] [CrossRef]
- Lucas, A.; Chondrogiannis, S. Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery. Int. J. Electr. Power Energy Syst. 2016, 80, 26–36. [Google Scholar] [CrossRef]
- Crespo Del Granado, P.; Pang, Z.; Wallace, S.W. Synergy of smart grids and hybrid distributed generation on the value of energy storage. Appl. Energy 2016, 170, 476–488. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Salehi, V.; Mohammed, O. Real-Time Energy Management Algorithm for Mitigation of Pulse Loads in Hybrid Microgrids. IEEE Trans. Smart Grid 2012, 3, 1911–1922. [Google Scholar] [CrossRef]
- Ru, Y.; Kleissl, J.; Martinez, S. Storage Size Determination for Grid-Connected Photovoltaic Systems. IEEE Trans. Sustain. Energy 2013, 4, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Young, C.; Chu, N.; Chen, L.; Hsiao, Y.; Li, C. A Single-Phase Multilevel Inverter with Battery Balancing. IEEE Trans. Ind. Electron. 2013, 60, 1972–1978. [Google Scholar] [CrossRef]
- Teng, J.; Luan, S.; Lee, D.; Huang, Y. Optimal Charging/Discharging Scheduling of Battery Storage Systems for Distribution Systems Interconnected with Sizeable PV Generation Systems. IEEE Trans. Power Syst. 2013, 28, 1425–1433. [Google Scholar] [CrossRef]
- Arefifar, S.A.; Mohamed, Y.A.I. DG Mix, Reactive Sources and Energy Storage Units for Optimizing Microgrid Reliability and Supply Security. IEEE Trans. Smart Grid 2014, 5, 1835–1844. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Bordons, C. Optimal Economical Schedule of Hydrogen-Based Microgrids with Hybrid Storage Using Model Predictive Control. IEEE Trans. Ind. Electron. 2015, 62, 5195–5207. [Google Scholar] [CrossRef]
- Lizana, J.; Friedrich, D.; Renaldi, R.; Chacartegui, R. Energy flexible building through smart demand-side management and latent heat storage. Appl. Energy 2018, 230, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Ensafisoroor, H.; Khamooshi, M.; Egelioglu, F.; Parham, K. An experimental comparative study on different configurations of basin solar still. Desalin. Water Treat. 2016, 57, 1901–1916. [Google Scholar] [CrossRef]
- Lee, S.W.; Sarp, S.; Jeon, D.J.; Kim, J.H. Smart water grid: The future water management platform. Desalin. Water Treat. 2015, 55, 339–346. [Google Scholar] [CrossRef]
- Allen, M.; Preis, A.; Iqbal, M.; Whittle, A.J. Case study: A smart water grid in Singapore. Water Pract. Technol. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Beyrami, J.; Chitsaz, A.; Parham, K.; Arild, Ø. Optimum performance of a single effect desalination unit integrated with a SOFC system by multi-objective thermo-economic optimization based on genetic algorithm. Energy 2019, 186, 115811. [Google Scholar] [CrossRef]
- Kamali, M.; Parham, K.; Assadi, M. Performance analysis of a single stage absorption heat transformer-based desalination system employing a new working pair of (EMIM)(DMP)/H2O. Int. J. Energy Res. 2018, 42, 4790–4804. [Google Scholar] [CrossRef]
- Haghghi, M.A.; Holagh, S.G.; Chitsaz, A.; Parham, K. Thermodynamic assessment of a novel multi-generation solid oxide fuel cell-based system for production of electrical power, cooling, fresh water, and hydrogen. Energy Convers. Manag. 2019, 197, 111895. [Google Scholar] [CrossRef]
- Horowitz, G. It’s Time for the Smart Water Grid. Available online: http://bluetechblog.com/ 2010/06/02/it’s-time-for-the-smart-water-grid/ (accessed on 11 January 2015).
- Boulos, P.F.; Wiley, A.N. Can we make water systems smarter? Opflow 2013, 39, 20–22. [Google Scholar] [CrossRef]
- Cheong, S.M.; Choi, G.W.; Lee, H.S. Barriers and Solutions to Smart Water Grid Development. Environ. Manag. 2016, 57, 509–515. [Google Scholar] [CrossRef]
- Hauser, A. Risks for smart water applications: Rigorous risk assessment of the adoption of smart water applications. In Proceedings of the 2013 ISA Water/Wastewater and Automatic Controls Symposium, Orlando, FL, USA, 7–9 August 2013. [Google Scholar]
- Philippe Gourbesville (November 4th 2011). ICT for Water Efficiency, Environmental Monitoring, Ema O. Ekundayo, IntechOpen. Available online: https://www.intechopen.com/books/environmental-monitoring/ict-for-water-efficiency (accessed on 1 November 2019). [CrossRef] [Green Version]
- Kim, D.H.; Park, K.H.; Choi, G.W.; Min, K.J. A study on the factors that affect the adoption of Smart Water Grid. J. Comput. Virol. Hacking Tech. 2014, 10, 119–128. [Google Scholar] [CrossRef]
- Byeon, S.; Choi, G.; Maeng, S.; Gourbesville, P. Sustainable water distribution strategy with smart water grid. Sustainability (Switzerland) 2015, 7, 4240–4259. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, J.; Larson, E.; Campbell, T.; Haggerty, C.; Fogarty, J.; Patel, S. Hydrosense: Infrastructure-mediated single-point sensing of whole-home water activity. In Proceedings of the 11th International Conference, UbiComp 2009, Orlando, FL, USA, 30 September–3 October 2009. [Google Scholar]
- Spinsante, S.; Squartini, S.; Gabrielli, L.; Pizzichini, M.; Gambi, E.; Piazza, F. Wireless M-bus sensor networks for smart water grids: Analysis and results. Int. J. Distrib. Sens. Netw. 2014, 2014, 579271. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, L.; Pizzichini, M.; Spinsante, S.; Squartini, S.; Gavazzi, R. Smart water grids for smart cities: A sustainable prototype demonstrator. In Proceedings of the EuCNC 2014—European Conference on Networks and Communications, Bologna, Italy, 23–26 June 2014. [Google Scholar]
- Squartini, S.; Gabrielli, L.; Mencarelli, M.; Pizzichini, M.; Spinsante, S.; Piazza, F. Wireless M-Bus sensor nodes in smart water grids: The energy issue. In Proceedings of the 2013 International Conference on Intelligent Control and Information Processing, ICICIP, Beijing, China, 9–11 June 2013; pp. 614–619. [Google Scholar]
- Fagiani, M.; Squartini, S.; Gabrielli, L.; Pizzichini, M.; Spinsante, S. Computational Intelligence in Smart water and gas grids: An up-to-date overview. In Proceedings of the International Joint Conference on Neural Networks, Beijing, China, 6–11 July 2014; pp. 921–926. [Google Scholar]
- Fagiani, M.; Squartini, S.; Gabrielli, L.; Spinsante, S.; Piazza, F. A review of datasets and load forecasting techniques for smart natural gas and water grids: Analysis and experiments. Neurocomputing 2015, 170, 448–465. [Google Scholar] [CrossRef]
- Fagiani, M.; Squartini, S.; Severini, M.; Piazza, F. A novelty detection approach to identify the occurrence of leakage in smart gas and water grids. In Proceedings of the International Joint Conference on Neural Networks, Killarney, Ireland, 11–16 July 2015. [Google Scholar]
- Qi, W.; Liu, J.; Christofides, P.D. A distributed control framework for smart grid development: Energy/water system optimal operation and electric grid integration. J. Process Control 2011, 21, 1504–1516. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Christofides, P.D. Supervisory Predictive Control for Long-Term Scheduling of an Integrated Wind/Solar Energy Generation and Water Desalination System. IEEE Trans. Control Syst. Technol. 2012, 20, 504–512. [Google Scholar] [CrossRef]
- Smart Systems Thinking for Comprehensive City Efficient Energy Planning. Available online: http://www.smartsteep.eu (accessed on 1 November 2019).
- Stepup, Energy Planning for Cities. Available online: http://www.stepupsmartcities.eu/ (accessed on 24 September 2013).
- Planning for Energy Efficient Cities (PLEEC). Available online: http://www.pleecproject.eu (accessed on 13 April 2016).
- ZenN-ZenN, Nearly Zero Energy Neighbourhoods. Available online: http://zenn-fp7.eu (accessed on 7 May 2015).
- R2Cities: Residential Renovation Towards Nearly Zero Energy Cities. Available online: http://r2cities.eu (accessed on 7 February 2014).
- Ready, Resource Efficient Cities Implementing Advanced Smart City Solutions. Available online: http://www.smartcity-ready.eu (accessed on 16 January 2015).
- EU-GUGLE—Sustainable Renovation Models for Smarter Cities. Available online: http://eu-gugle.eu (accessed on 27 April 2017).
- OPTIMUS Smart City. Available online: http://optimus-smartcity.eu (accessed on 26 April 2016).
- Urban Transformation. Available online: http://urbantransform.eu (accessed on 1 November 2019).
- Catmed. Available online: http://www.catmed.eu/ (accessed on 5 October 2012).
- City-Zen, New Urban Energy. Available online: http://www.cityzen-smartcity.eu/ (accessed on 4 November 2019).
- Grow Smarter. Available online: http://www.grow-smarter.eu/home/ (accessed on 11 October 2019).
- Integrative Smart City Planning. Available online: http://www.insmartenergy.com (accessed on 1 November 2019).
- Remourban, REgeneration MOdel for Accelerating the Smart URBAN Transformation. Available online: http://www.remourban.eu/ (accessed on 28 October 2019).
- Sinfonia, Low Carbon Cities for Better Living. Available online: http://www.sinfonia-smartcities.eu (accessed on 12 December 2014).
- The IRIS Smart Cities Consortium. Available online: http://irissmartcities.eu/ (accessed on 22 October 2017).
- Smarter Together, Smart and Inclusive Solutions for a Better Life in Urban Districts. Available online: http://smarter-together.eu/ (accessed on 3 August 2016).
- Brehm, S.S.; Brehm, J.W. CHAPTER 1—Introduction: Freedom, Control, and Reactance Theory. In Psychological Reactance; Brehm, S.S., Brehm, J.W., Eds.; Academic Press: Cambridge, MA, USA, 1981; pp. 1–7. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farmanbar, M.; Parham, K.; Arild, Ø.; Rong, C. A Widespread Review of Smart Grids Towards Smart Cities. Energies 2019, 12, 4484. https://doi.org/10.3390/en12234484
Farmanbar M, Parham K, Arild Ø, Rong C. A Widespread Review of Smart Grids Towards Smart Cities. Energies. 2019; 12(23):4484. https://doi.org/10.3390/en12234484
Chicago/Turabian StyleFarmanbar, Mina, Kiyan Parham, Øystein Arild, and Chunming Rong. 2019. "A Widespread Review of Smart Grids Towards Smart Cities" Energies 12, no. 23: 4484. https://doi.org/10.3390/en12234484
APA StyleFarmanbar, M., Parham, K., Arild, Ø., & Rong, C. (2019). A Widespread Review of Smart Grids Towards Smart Cities. Energies, 12(23), 4484. https://doi.org/10.3390/en12234484