A Novel Coding Metasurface for Wireless Power Transfer Applications
Abstract
:1. Introduction
2. Coding Metasurface Theory
2.1. Phase Quantization
2.2. Optimal Phase Control for Adaptive WPT
- Training: sending the signal with 256 independent ON/OFF patterns;
- Channel estimation: 256 channels between each unit cell of the metasurface is estimated by multiplying the received signals with the inversion of 256 transmitting patterns;
- Optimal phase calculation: optimal phase of each unit cell is obtained by taking the phase of the channel after being conjugated;
- Phase quantization: quantizing the phase based on Equation (5);
- Optimal ON/OFF pattern: mapping the quantization phases with the ON/OFF state ( to “ON”, to “OFF”).
3. Design of Coding Metasurface
3.1. Unit Cell Design
3.2. Coding Metasurface Construction
4. Results
4.1. Simulation Results
4.2. Experimental Results
4.2.1. Beam Steering with Beam Synthesis Scheme
4.2.2. Adaptive Beam Steering with Optimal Phase Control
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WPT | Wireless Power Transfer |
IoTs | Internet of Things |
WSN | Wireless Sensor Network |
EM | Electromagnetic |
PAA | Phased Array Antennas |
HPBW | Half Power Beamwidth |
CST | Computer Simulation Technology |
FCC | Federal Communications Commission |
References
- Tesla, N. Apparatus for Transmitting Electrical Energy. United States Patent US1119732A, 1 December 1914. Available online: https://patents.google.com/patent/US1119732A/en (accessed on 25 November 2019).
- Xie, L.; Shi, Y.; Hou, T.; Lou, W. Wireless Power Transfer and Applications to Sensor Networks. IEEE Wirel Commun. 2013, 20, 140–145. [Google Scholar]
- Kamalinejad, P.; Mahapatra, C.; Sheng, Z.; Mirabbasi, S.; Leung, V.C.M.; Guan, Y.L. Wireless Energy Harvesting for the Internet of Things. IEEE Commun. Mag. 2015, 53, 102–108. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Xu, Q.; Bao, D.; Du, L.; Wan, X.; Tang, W.X.; Ouyang, C.; Zhou, X.Y.; Yuan, H.; et al. Anisotropic coding metamaterials and their powerful manupulation of differently polairzed terahertz waves. Light Sci. Appl. 2016, 5, e16076. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.J.; Qi, M.Q.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Campbell, S.D.; Sell, D.; Jenkins, R.P.; Whiting, E.B.; Fan, J.A.; Werner, D.H. Review of numerical techniques for meta-device desing [Invited]. Opt. Mater. Express 2019, 9, 1842–1863. [Google Scholar] [CrossRef]
- Cui, T.J.; Liu, S.; Zhang, L. Information metamaterials and metasurfaces. J. Mater. Chem. C 2017, 5, 3644–3668. [Google Scholar] [CrossRef]
- Yang, H.; Yang, F.; Xu, S.; Mao, Y.; Li, M.; Cao, X.; Gao, J. A 1-Bit 10 × 10 Reconfigurable Reflectarray Antenna: Design, Optimizatioin, and Experiment. IEEE Trans. Antennas Propag. 2016, 64, 2246–2254. [Google Scholar] [CrossRef]
- Yang, H.; Yang, F.; Xu, S.; Li, M.; Cao, X. Experimental Study of a 1-Bit 10 × 10 Reconfigurable Reflectarray Antenna. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 2153–2154. [Google Scholar]
- Yang, H.; Yang, F.; Cao, X.; Xu, S.; Cao, J.; Chen, X.; Li, M.; Li, T. A 1600-Element Dual-Frequency Electronically Reconfigurable Reflectarray at X/Ku-Band. IEEE Trans. Antennas Propag. 2017, 65, 3024–3032. [Google Scholar] [CrossRef]
- Yang, H.; Yang, F.; Xu, S.; Li, M.; Cao, X.; Gao, J. A 1-Bit Multipolarization Reflectarray Element for Reconfigurable Large-Aperture Antennas. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 581–584. [Google Scholar] [CrossRef]
- Yang, H.; Cao, X.; Yang, F.; Gao, J.; Xu, S.; Li, M.; Chen, X.; Zhao, Y.; Zheng, Y.; Li, S. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 2016. [Google Scholar] [CrossRef]
- Tian, S.; Liu, H.; Li, L. Design of 1-Bit Digital Reconfigurable Reflective Metasurface for Beam-Scanning. Appl. Sci. 2017, 7, 882. [Google Scholar] [CrossRef]
- Huang, C.; Sun, B.; Pan, W.; Cui, J.; Wu, X.; Luo, X. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 2017, 7, 42302. [Google Scholar] [CrossRef]
- Li, Y.B.; Li, L.L.; Xu, B.B.; Wu, W.; Wu, R.Y.; Wan, X.; Cheng, Q.; Cui, T.J. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and SingleFrequency Microwave Imaging. Sci. Rep. 2016, 6, 23731. [Google Scholar] [CrossRef]
- Ranaweera, A.L.A.K.; Pham, T.S.; Bui, H.N.; Ngo, V.; Lee, J.W. An active metasurface for feldlocalizing wireless power transfer using dynamically reconfgurable cavities. Sci. Rep. 2019, 9, 11735. [Google Scholar] [CrossRef]
- Lang, H.D.; Saris, C.D. Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces. IEEE Trans. Antennas Propag. 2017, 65, 5462–5474. [Google Scholar] [CrossRef]
- Smith, D.R.; Gowda, V.R.; Yurduseven, O.; Larouche, S.; Lipworth, G.; Urzhumov, Y.; Reynolds, M.S. An analysis of beamed wireless power transfer in the Fresnel zone using a dynamic, metasurface aperture. J. Appl. Phys. 2017, 121, 014901. [Google Scholar] [CrossRef]
- Song, M.; Baryshnikova, K.; Markvart, A.; Belov, P.; Nenasheva, E.; Simovski, C.; Kapitanova, P. Smart table based on a metasurface for wireless power transfer. Phys. Rev. Appl. 2019, 11, 054046. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Zhang, X.; Liu, H.; Shi, Y. Design, measurement and analysis of near field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer. IEEE Access 2019, 7, 110387–110399. [Google Scholar] [CrossRef]
- Yu, S.; Liu, H.; Li, L. Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics. IEEE Trans. Ind. Electron. 2019, 66, 3993–4002. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Zhang, H.; Xue, W. Efficient wireless power transfer system integrating with metasurface for biological applications. IEEE Trans. Ind. Electron. 2018, 65, 3230–3239. [Google Scholar] [CrossRef]
- Nadeem, Q.U.A.; Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.S. Intelligent Reflecting Surface Assisted Multi-User MISO Communication. arXiv 2019, arXiv:1906.02360. [Google Scholar]
- Yang, Y.; Zheng, B.; Zhang, S.; Zhang, R. Intelligent Reflecting Surface Meets OFDM: Protocol Design and Rate Maximization. arXiv 2019, arXiv:1906.09956. [Google Scholar]
- Mishra, D.; Johansson, H. Channel Estimation and Low-Complexity Beamforming Design for Passive Intelligent Surface Assisted MISO Wireless Energy Transfer. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4659–4663. [Google Scholar]
- Lipworth, G.S.; Hagerty, J.A.; Arnitz, D.; Urzhumov, Y.A.; Nash, D.R.; Russell, J. A Large Planar Holographic Reflectarray for Fresnel-Zone Microwave Wireless Power Transfer at 5.8 GHz. In Proceedings of the EEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 964–967. [Google Scholar] [CrossRef]
- Aziz, A.A.; Ginting, L.; Setiawan, D.; Park, J.H.; Tran, N.M. Battery-Less Location Tracking for Internet of Things: Simultaneous Wireless Power Transfer and Positioning. IEEE Internet Things 2019, 65. [Google Scholar] [CrossRef]
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
W | 11 | h | 1.52 |
a | 1.83 | b | 1.52 |
c | 0.25 |
Position | Transmission Coefficient (dB) | Improvement (dB) | |
---|---|---|---|
without Re-Training | Re-Training | ||
1. Close to Tx | −61.4 | −54.86 | 6.54 |
2. In the middle | −46 | −43.83 | 2.17 |
3. Close to Rx | −59.4 | −54.5 | 4.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, N.M.; Amri, M.M.; Park, J.H.; Hwang, S.I.; Kim, D.I.; Choi, K.W. A Novel Coding Metasurface for Wireless Power Transfer Applications. Energies 2019, 12, 4488. https://doi.org/10.3390/en12234488
Tran NM, Amri MM, Park JH, Hwang SI, Kim DI, Choi KW. A Novel Coding Metasurface for Wireless Power Transfer Applications. Energies. 2019; 12(23):4488. https://doi.org/10.3390/en12234488
Chicago/Turabian StyleTran, Nguyen Minh, Muhammad Miftahul Amri, Je Hyeon Park, Sa Il Hwang, Dong In Kim, and Kae Won Choi. 2019. "A Novel Coding Metasurface for Wireless Power Transfer Applications" Energies 12, no. 23: 4488. https://doi.org/10.3390/en12234488
APA StyleTran, N. M., Amri, M. M., Park, J. H., Hwang, S. I., Kim, D. I., & Choi, K. W. (2019). A Novel Coding Metasurface for Wireless Power Transfer Applications. Energies, 12(23), 4488. https://doi.org/10.3390/en12234488