Microgrid Infrastructure Compendium Analysis with a Model Creation Tool and Guideline Based on Machine Learning Techniques
Abstract
:1. Introduction
2. Methodology
3. Microgrid Compendium Analysis
4. Microgrid Infrastructure Model Creation
4.1. Guideline Based on Aggregated Information from the Tables
4.2. MG Model Based on ML Algorithms
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | <0.01 | <0.01 | 0.01 | 0.03 | 0.2 | 0.96 | 4.37 | 18 | 37 | 106 | 300 |
PV | <0.01 | <0.01 | <0.01 | 0.01 | 0.03 | 0.18 | 1 | 5 | 14 | 50 | 250 |
Wind | <0.01 | <0.01 | <0.01 | 0.01 | 0.03 | 0.3 | 2 | 8.1 | 12 | 42 | 80 |
Fuel Cell | <0.01 | <0.01 | <0.01 | 0.01 | 0.2 | 0.4 | 1 | 2.7 | 5 | 43 | 50 |
Fossil Fuel | 0.01 | 0.01 | 0.05 | 0.1 | 0.32 | 1.3 | 4 | 14.9 | 28 | 121 | 266 |
Microturbines | 0.03 | 0.03 | 0.03 | 0.05 | 0.08 | 0.11 | 2.19 | 4 | 5 | 6 | 6 |
CHP | 0.01 | 0.01 | 0.07 | 0.2 | 0.3 | 1 | 5.05 | 28.9 | 52 | 136 | 400 |
Solar Thermal | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.1 | 0.23 | 0.25 | 0.25 | 0.25 | 0.25 |
Hydro | <0.01 | <0.01 | <0.01 | 0,01 | 0.11 | 0.9 | 5 | 19.8 | 39 | 115 | 126 |
Biomass and BioFuel | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.5 | 2.92 | 10 | 17 | 17 |
Storage | <0.01 | <0.01 | 0.03 | 0.05 | 0.1 | 0.4 | 1 | 3 | 7 | 20 | 40 |
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | <0.01 | <0.01 | 0.02 | 0.03 | 0.06 | 0.74 | 3 | 16.5 | 34 | 150 | 270 |
PV | <0.01 | <0.01 | <0.01 | <0.01 | 0.03 | 0.14 | 0.69 | 3.78 | 5 | 135 | 250 |
Wind | <0.01 | <0.01 | 0.01 | 0.01 | 0.09 | 0.4 | 2.4 | 7.93 | 11 | 26 | 30 |
Fuel Cell | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.13 | 17.3 | 23 | 23 | 23 | 23 |
Fossil Fuel | 0.01 | 0.02 | 0.06 | 0.11 | 0.3 | 1.05 | 2.65 | 12.1 | 26 | 129 | 266 |
Microturbines | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
CHP | 0.02 | 0.02 | 0.09 | 0.23 | 0.32 | 1.11 | 1.4 | 12.9 | 247 | 400 | 400 |
Hydro | <0.01 | <0.01 | <0.01 | 0.01 | 0.13 | 0.9 | 5.1 | 21 | 41 | 94 | 106 |
Biomass and Biofuel | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.75 | 2.5 | 16 | 17 |
Storage | 0.01 | 0.01 | 0.02 | 0.04 | 0.16 | 0.66 | 1.63 | 3 | 4 | 32 | 40 |
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | <0.01 | <0.01 | <0.01 | <0.01 | 0.1 | 0.64 | 4 | 15.6 | 44 | 81 | 120 |
PV | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.11 | 1 | 4.76 | 14 | 50 | 93 |
Wind | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.12 | 1.08 | 9.25 | 21 | 42 | 42 |
Fuel Cell | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | 0.23 | 0.4 | 1 | 1 | 1 | 1 |
Fossil Fuel | 0.01 | 0.01 | 0.02 | 0.05 | 0.2 | 0.7 | 2.34 | 9.4 | 13 | 29 | 31 |
Microturbines | 0.03 | 0.03 | 0.03 | 0.03 | 0.09 | 0.25 | 0.66 | 0.8 | 0.8 | 0.8 | 0.8 |
CHP | 0.01 | 0.01 | 0.02 | 0.09 | 0.2 | 0.4 | 3 | 15.6 | 42 | 57 | 57 |
Hydro | <0.01 | <0.01 | <0.01 | <0.01 | 0.2 | 0.9 | 2.5 | 4.9 | 6 | 7 | 7 |
Biomass and Biofuel | 0.01 | 0.01 | 0.01 | 0.01 | 0.45 | 1 | 5.25 | 12 | 15 | 15 | 15 |
Storage | <0.01 | <0.01 | 0.01 | 0.03 | 0.1 | 0.25 | 0.5 | 2 | 2 | 17 | 20 |
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | 0.01 | 0.01 | 0.05 | 0.11 | 0.25 | 1 | 3.15 | 12.9 | 30 | 126 | 300 |
PV | <0.01 | <0.01 | 0.01 | 0.01 | 0.1 | 0.2 | 0.74 | 2.8 | 8 | 44 | 50 |
Wind | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.03 | 0.13 | 2.9 | 15 | 30 | 30 |
Fuel Cell | 0.08 | 0.08 | 0.2 | 0.25 | 0.33 | 0.5 | 1.15 | 2.8 | 9 | 50 | 50 |
Fossil Fuel | 0.01 | 0.02 | 0.11 | 0.26 | 1.5 | 3.6 | 10 | 27 | 45 | 178 | 200 |
Microturbines | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
CHP | 0.2 | 0.2 | 0.2 | 0.21 | 0.38 | 2 | 4.53 | 15 | 102 | 125 | 125 |
Solar Thermal | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.18 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Hydro | 0.05 | 0.05 | 0.05 | 0.05 | 0.29 | 1 | 94.8 | 126 | 126 | 126 | 126 |
Biomass and Biofuel | 0.03 | 0.03 | 0.03 | 0.03 | 0.2 | 1.43 | 9.75 | 17 | 17 | 17 | 17 |
Storage | <0.01 | <0.01 | 0.02 | 0.03 | 0.1 | 0.23 | 0.51 | 2.1 | 4 | 6 | 6 |
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | 0.01 | 0.01 | 0.02 | 0.08 | 0.32 | 2 | 11.2 | 29.5 | 44 | 60 | 61 |
PV | <0.01 | <0.01 | 0.01 | 0.02 | 0.06 | 0.29 | 1.39 | 4.1 | 6 | 14 | 14 |
Wind | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.9 | 3.3 | 3 | 3 | 3 |
Fuel Cell | 0.05 | 0.05 | 0.07 | 0.16 | 0.35 | 0.4 | 0.93 | 3.46 | 5 | 5 | 5 |
Fossil Fuel | 0.02 | 0.02 | 0.06 | 0.11 | 0.28 | 2.6 | 7.55 | 14.3 | 17 | 19 | 19 |
Microturbines | 0.1 | 0.1 | 0.1 | 0.1 | 0.83 | 3 | 4.95 | 5.6 | 6 | 6 | 6 |
CHP | 0.06 | 0.06 | 0.1 | 0.25 | 0.53 | 5.2 | 22.5 | 45.6 | 65 | 137 | 137 |
Solar Thermal | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.06 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Hydro | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 2 | 2 | 2 |
Storage | 0.03 | 0.03 | 0.05 | 0.11 | 0.2 | 0.51 | 1.25 | 5.8 | 7 | 8 | 8 |
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | 0.03 | 0.03 | 0.11 | 0.25 | 0.78 | 1.85 | 8.33 | 42.8 | 68 | 106 | 108 |
PV | 0.01 | 0.01 | 0.02 | 0.05 | 0.32 | 1.31 | 17.8 | 29.3 | 58 | 61 | 61 |
Wind | <0.01 | <0.01 | <0.01 | 0.02 | 0.5 | 3.87 | 30 | 77.1 | 80 | 80 | 80 |
Fuel Cell | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Fossil Fuel | 0.05 | 0.05 | 0.1 | 0.28 | 1 | 1.2 | 1.5 | 6.64 | 28 | 34 | 34 |
CHP | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Hydro | 0.03 | 0.03 | 0.03 | 0.03 | 2.17 | 8.6 | 16.7 | 19.4 | 19.4 | 19.4 | 19.4 |
Biomass and biofuel | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.55 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Storage | 0.03 | 0.03 | 0.05 | 0.08 | 0.2 | 1 | 6 | 10.7 | 18 | 27 | 27 |
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | 0.05 | 0.05 | 0.2 | 0.31 | 1.55 | 5.15 | 14.3 | 46.4 | 58 | 80 | 80 |
PV | <0.01 | <0.01 | 0.01 | 0.03 | 0.16 | 1.18 | 7.65 | 18.2 | 20 | 45 | 45 |
Wind | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.3 | 1.38 | 3.4 | 9 | 12 | 12 |
Fuel Cell | <0.01 | <0.01 | <0.01 | <0.01 | 0.04 | 0.6 | 1.53 | 1.6 | 2 | 2 | 2 |
Fossil Fuel | 0.01 | 0.01 | 0.03 | 0.21 | 1.2 | 3 | 11 | 49.87 | 64 | 163 | 163 |
Microturbines | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 | 2.65 |
CHP | 1 | 1 | 1 | 1.5 | 4.6 | 6.1 | 10 | 28 | 34 | 34 | 34 |
Solar Thermal | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
Biomass and Biofuel | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 |
Storage | 0.03 | 0.03 | 0.04 | 0.09 | 0.2 | 0.5 | 1 | 5.08 | 7 | 7 | 7 |
Percentiles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | |
Total | 0.01 | 0.01 | 0.01 | 0.01 | 0.06 | 0.24 | 0.5 | 1.02 | 5 | 8 | 8 |
PV | <0.01 | <0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.11 | 0.22 | 1 | 2 | 2 |
Wind | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.08 | 0.4 | 1.97 | 4 | 5 | 5 |
Fuel Cell | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.05 | 0.08 | 0.1 | 0.1 | 0.1 |
Fossil Fuel | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.16 | 0.35 | 1.18 | 1.5 | 2 | 2 |
Microturbines | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
CHP | 0.1 | 0.1 | 0.1 | 0.1 | 0.13 | 0.22 | 1.86 | 2.4 | 2.4 | 2.4 | 2.4 |
Solar Thermal | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Hydro | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Storage | 0.05 | 0.05 | 0.06 | 0.08 | 0.1 | 0.25 | 0.46 | 0.68 | 1 | 1 | 1 |
References
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280. [Google Scholar] [CrossRef]
- Ren21. Renewables 2018 Global Status Report; Ren21: Paris, France, 2018. [Google Scholar]
- Lasseter, R.H. Microgrids and Distributed Generation R.H. Lasseter. J. Energy Eng. 2007, 133, 144–149. [Google Scholar] [CrossRef]
- Hatziargyriou, N. Microgrids: Architectures and Control; John Wiley & Sons: New York, NY, USA, 2013; ISBN 9781118720677. [Google Scholar]
- US Department of Energy. DOE Microgrid Workshop Report; DOE: Washington, DC, USA, 2011.
- C6.22, W.G. CIGRÉ 635-Microgrids 1 Engineering, Economics, & Experience; CIGRÉ: Paris, France, 2015; ISBN 9782858733385. [Google Scholar]
- IEEE Power and Energy Society. IEEE Standard for the Specification of Microgrid Controllers in IEEE Std. 2030.7; IEEE Power and Energy Society: Piscataway, NJ, USA, 2017; pp. 1–43. [Google Scholar]
- Siemens. Microgrids White Paper; Siemens: Erlangen, German, 2011. [Google Scholar]
- Wild, J.; Boutin, V.; Barton, P.; Haines, L. Microgrid Benefits and Example Projects; Schneider Electric: Rueil-Malmaison, France, 2016. [Google Scholar]
- Pacheco, F.E.; Foreman, J.C. Microgrid Reference Methodology for Understanding Utility and Customer Interactions in Microgrid Projects. Electr. J. 2017, 30, 44–50. [Google Scholar] [CrossRef]
- Navigant Consulting. Microgrids Research Assessment–Phase 2; Navigant Consulting: Chicago, IL, USA, 2009. [Google Scholar]
- Agrawal, P. Overview of DOE Microgrid Activities. Available online: http://microgrid-symposiums.org/wp-content/uploads/2014/12/montreal_agrawal.pdf (accessed on 13 June 2018).
- Schwaegerl, C.; Tao, L.; PeÇas Lopes, J.; Madureira, A.; Mancarella, P.; Anastasiadis, A.; Hatziargyriou, N.; Krkoleva, A. Report on the Technical, Social, Economic, and Environmental Benefits Provided by Microgrids on Power System Operation; Siemens AG: Erlangen, Germany, 2009. [Google Scholar]
- Vaahedi, E.; Nodehi, K.; Heim, D.; Rahimi, F.; Ipakchi, A. The emerging transactive microgrid controller. IEEE Power Energy Mag. 2017, 15, 80–87. [Google Scholar] [CrossRef]
- Martin-Martínez, F.; Sánchez-Miralles, A.; Rivier, M. A literature review of Microgrids: A functional layer based classification. Renew. Sustain. Energy Rev. 2016, 62, 1133–1153. [Google Scholar] [CrossRef]
- Platt, G.; Berry, A.; Cornforth, D.J. What Role for Microgrids? Elsevier Inc.: Philadelphia, PA, USA, 2012; ISBN 9780123864529. [Google Scholar]
- Nakaththalage, M.; Ariyasinghe, S.; Thantrige, K.; Udayanga, M. Microgrid Test-Beds and Its Control Strategies. Smart Grid Renew. Energy 2013, 4, 11–17. [Google Scholar]
- Ustun, T.S.; Ozansoy, C.; Zayegh, A. Recent developments in microgrids and example cases around the world - A review. Renew. Sustain. Energy Rev. 2011, 15, 4030–4041. [Google Scholar] [CrossRef]
- Bunker, K.; Doig, S.; Hawley, K.; Morris, J. Renewable Microgrids: Profiles From Islands and Remote Communities Across the Globe. Rocky Mt. Inst. Carbon War Room 2015, 11, 1–32. [Google Scholar]
- ABB. ABB Microgrid solutions - Global Customer Reference; ABB: Zurich, Switzerland, 2017. [Google Scholar]
- CEN-CENELEC-ETSI. Smart Grid Coordination Group Sustainable Processes; CEN-CENELEC-ETSI: Brussels, Belgium, 2012; pp. 1–101. [Google Scholar]
- Maitra, A.; Simmins, J.; Seal, B.; Chhaya, S.; Huque, A. Grid Interactive Microgrid Controllers and the Management of Aggregated Distributed Energy Resources ( DER ); Palo Alto Networks: Santa Clara, CA, USA, 2015. [Google Scholar]
- Kitchenham, B.; Charters, S. Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3. Engineering 2007, 45, 1051. [Google Scholar]
- Gupta, A.; Saini, R.P.; Sharma, M.P. Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages. Renew. Energy 2010, 35, 520–535. [Google Scholar] [CrossRef]
- Toshiba Press Group Toshiba awarded major order for Microgrid Systems by the Okinawa Electric Power Company, Inc. Available online: https://www.toshiba.co.jp/about/press/2010_01/pr1801.htm (accessed on 6 September 2018).
- Lidula, N.W.A.; Rajapakse, A.D. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186–202. [Google Scholar] [CrossRef]
- Ferrari, M.L.; Pascenti, M.; Traverso, A.; Massardo, A.F. An experimental facility for test on distributed generation systems. In Proceedings of the International Conference on Applied Energy, SuZhou, China, 5–8 July 2012. [Google Scholar]
- Ferrari, M.L.; Pascenti, M.; Traverso, A.; Rivarolo, M. Smart PolyGeneration Grid: A new experimental facility. In Proceedings of the ASME Turbo Expo 2012, Copenhagen, Denmark, 11–15 June 2012; pp. 1–13. [Google Scholar]
- Ton, D.T.; Smith, M.A. The U.S. Department of Energy’s Microgrid Initiative. Electr. J. 2012, 25, 84–94. [Google Scholar] [CrossRef]
- Ferrari, M.L.; Pascenti, M.; Traverso, A.; Massardo, A.F. Real-Time Optimization and Experimental Validation of Smart Polygeneration Grids with Thermal Storage Device. In Proceedings of the International Conference on Applied Energy, Pretoria, South Africa, 1–4 July 2013. [Google Scholar]
- Ortiz, C.E.; Francisco, J.; Rada, Á.; Hernández, E.; Lozada, J.; Carbajal, A. Protection, Control, Automation, and Integration for Off-Grid Solar-Powered Microgrids in Mexico. In Proceedings of the 40th Annual Western Protective Relay Conference, Washington, DC, USA, 15–17 October 2013; pp. 1–11. [Google Scholar]
- Palma-Behnke, R.; Benavides, C.; Lanas, F.; Severino, B.; Reyes, L.; Llanos, J.; Saez, D. A microgrid energy management system based on the rolling horizon strategy. IEEE Trans. Smart Grid 2013, 4, 996–1006. [Google Scholar] [CrossRef]
- Wells, C.H.; Siefert, G.; Torre, W.; Washom, B.; Olson, I.; Harrell, J. Case Study: High-Availability Secure Microgrid Monitoring System for UCSD. In Proceedings of the Power and Energy Automation Conference, Spokane, Washington, 26–28 March 2013. [Google Scholar]
- Bayindir, R.; Bekiroglu, E.; Hossain, E.; Kabalci, E. Microgrid facility at European union. In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 865–872. [Google Scholar]
- Chacón, J.; Carrillero, I.; Aguado, M. Life factory microgrid. Implementación de un modelo de negocio sostenible de gestión energética para comsumidores industriales. In Proceedings of the II Congreso Smart Grids, Madrid, Spain, 27–28 October 2014. [Google Scholar]
- Cuneo, A.; Ferrari, M.L.; Pascenti, M.; Traverso, A. State of Charge Estimation of Thermal Storages for Distributed Generation Systems. Energy Procedia 2014, 61, 254–257. [Google Scholar] [CrossRef]
- Ferrari, M.L.; Traverso, A.; Pascenti, M.; Massardo, A.F. Plant management tools tested with a small-scale distributed generation laboratory. Energy Convers. Manag. 2014, 78, 105–113. [Google Scholar] [CrossRef]
- Ferrari, M.L.; Pascenti, M.; Sorce, A.; Traverso, A.; Massardo, A.F. Real-time tool for management of smart polygeneration grids including thermal energy storage. Appl. Energy 2014, 130, 670–678. [Google Scholar] [CrossRef]
- Hossain, E.; Kabalci, E.; Bayindir, R.; Perez, R. Microgrid testbeds around the world: State of art. Energy Convers. Manag. 2014, 86, 132–153. [Google Scholar] [CrossRef]
- Salas, P.; Guerrero, J.M.; Sureda, F. Mas Roig mini-grid: A renewable-energy-based rural islanded microgrid. In Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), Cavtat, Croatia, 13–16 May 2014; pp. 975–982. [Google Scholar]
- Santamaría, G.; Galo Corzo, L.; Arrizubieta, L.; Sansinenea, E.; Cuevas, I.; Cerro, I.; Martinez, I.; Aizpuru, A. Diseño de la Microred Inteligente I-Sare. In Proceedings of the II Congreso Smart Grids, Madrid, Spain, 27–28 October 2014. [Google Scholar]
- Ubilla, K.; Jiménez-Estévez, G.A.; Hernádez, R.; Reyes-Chamorro, L.; Irigoyen, C.H.; Severino, B.; Palma-Behnke, R. Smart microgrids as a solution for rural electrification: Ensuring long-term sustainability through cadastre and business models. IEEE Trans. Sustain. Energy 2014, 5, 1310–1318. [Google Scholar] [CrossRef]
- Ton, D. DOE Microgrids Program Overview; Office of Electricity Delivery and Energy Reliability: Washington, DC, USA, 2015. [Google Scholar]
- Veda, S. Perspectives on Microgrid Development; GE Global Research Center: Niskayuna, NY, USA, 2015. [Google Scholar]
- Falahati, B.; Chua, E.; Kazemi, A.; Chua, E. A Novel Design for an Expandable, Modular Microgrid Unit. In Proceedings of the 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN, USA, 6–9 September 2016. [Google Scholar]
- Gouveia, C.; Rua, D.; Ribeiro, F.; Miranda, L.; Rodrigues, J.M.; Moreira, C.L.; Peças Lopes, J.A. Experimental validation of smart distribution grids: Development of a microgrid and electric mobility laboratory. Int. J. Electr. Power Energy Syst. 2016, 78, 765–775. [Google Scholar] [CrossRef]
- Guo, L.; Liu, W.; Li, X.; Liu, Y.; Jiao, B.; Wang, W.; Wang, C.; Member, S.; Li, F.; Member, S. Energy Management System for Stand-Alone Wind-powered-desalination Microgrid. IEEE Trans. Smart Grid 2016, 7, 1079–1087. [Google Scholar] [CrossRef]
- Loleit, M.; Püttgen, H.B. Modern Energy for Off-Grid Communities in Southeast Asia. Opportunities and challenges for microgrid projects. In Proceedings of the Asian Conference on Energy, Power and Transportation Electrification(ACEPT), Singapore, 25–27 October 2016. [Google Scholar]
- SMA LARGE SCALE ISLAND ELECTRIFICATION WITH PV DIESEL AND STORAGE-ST. EUSTATIUS, NL ANTILLES. Available online: https://www.sma.de/en/products/references/st-eustatius-caribbean.html (accessed on 20 September 2018).
- Thompson, M. Advancements in synchronizing systems for microgrids and grid restoration. In Proceedings of the 13th International Conference on Developments in Power System Protection, Edinburgh, UK, 7–10 March 2016; pp. 1–6. [Google Scholar]
- Fenimore, T.; Gould, A.; Wright, L. Implementing a microgrid using standard utility control equipment. In Proceedings of the 2017 70th Annual Conference for Protective Relay Engineers (CPRE), College Station, TX, USA, 3–6 April 2017. [Google Scholar]
- Khatib, A.R.; Nayak, B.; Dai, B.; Coleman, J.; Hoskins, S.; Tierson, J. Design and development of a microgrid control system for integration of induction generation with storage capability at Saint Paul Island, Alaska. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington DC, USA, 23–26 April 2017; pp. 1–5. [Google Scholar]
- Manson, S.; Ravikumar, K.G.; Raghupathula, S.K. Microgrid Systems: Design, Control Functions, Modeling, and Field Experience. In Proceedings of the XIII Simposio Iberoamericano sobre protección de sistemas eléctricos de Potencia, Monterrey, Mexico, 19–24 February 2017. [Google Scholar]
- Goda, T. Microgrid Research at Mitsubishi; Mitsubishi Electric: Chiba, Japan, 2005. [Google Scholar]
- Cork Institute of Technology Nimbus Microgrid. Available online: https://www.nimbus.cit.ie/2014/01/national-sustainable-building-energy-test-bed-nsbet/ (accessed on 4 May 2018).
- Jofemar and CENER Factory Microgrid. Available online: http://www.factorymicrogrid.com/es/el-proyecto/objetivos-generales-y-especificos.aspx (accessed on 25 May 2018).
- Jimeno, J. Tecnalia Distributed Generation Technologies Demonstration and Development Facilities in Tecnalia; Tecnalia: Bilbao, Spain, 2017. [Google Scholar]
- Bordons, C.; Garcia-Torres, F.; Ridao, M.A. Model Predictive Control of Microgrids; Springer: Gewerbestrasse, Switzerland, 2010. [Google Scholar]
- Barnes, M.; Kondoh, J.; Asano, H.; Oyarzabal, J.; Ventakaramanan, G.; Lasseter, R.; Hatziargyriou, N.; Green, T. Real-World MicroGrids-An Overview. In Proceedings of the 2007 IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 16–18 April 2007; pp. 1–8. [Google Scholar]
- Borghetti, A.; Bosetti, M.; Bossi, C.; Massucco, S.; Micolano, E.; Morini, A.; Nucci, C.A.; Paolone, M.; Silvestro, F. An energy resource scheduler implemented in the automatic management system of a microgrid test facility. In Proceedings of the 2007 International Conference on Clean Electrical Power, Capri, Itlay, 21–23 May 2007; pp. 94–100. [Google Scholar]
- Buchholz, B.; Erge, T.; Hatziargyriou, N. Long term European field tests for microgrids. In Proceedings of the 2007 Power Conversion Conference-Nagoya, Nagoya, Japan, 2–5 April 2007; pp. 643–645. [Google Scholar]
- Johnson, R.F.; Casey, L.F.; Reedy, B. Lana‘i: An Inside Look at the World’s Most Advanced Renewable Energy Micro Grid; SunPower: San Jose, CA, USA, 2009. [Google Scholar]
- Nam, K.; Ahn, J.; Choi, H.; Kim, S.; Kim, J.; Cho, C.; Jeon, J. Establishment of a pilot plant for KERI microgrid system based on power IT development program in Korea. In Proceedings of the 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific, Seoul, South Korea, 26–30 October 2009; pp. 1–6. [Google Scholar]
- Mitchell, T.M. Machine Learning; McGraw-Hill International Editions; McGraw-Hill: New York, NY, USA, 1997; ISBN 9780071154673. [Google Scholar]
- Christopher, M.B. Pattern Recognition and Machine Learning; Springer Science + Business Media: Berlin, Germany, 2006; ISBN 0-387-31073-8. [Google Scholar]
- Homer Energy HOMER Pro 3.13. Available online: https://www.homerenergy.com/products/pro/docs/3.11/index.html (accessed on 14 November 2019).
- Energy, H. HOMER Grid. Available online: https://www.homerenergy.com/products/grid/docs/1.1/index.html (accessed on 14 November 2019).
- The World Bank Group. Technical and Economic Assessment of Off-Grid, Mini-Grid and Grid Electrification Technologies; The World Bank Group: Washington DC, USA, 2006. [Google Scholar]
- Mary, F.; Beushausen, H. Navigating the maze of energy storage costs. PV Tech. 2016, 7, 84–88. [Google Scholar]
COMBINATIONS | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Generation technologies used in the combination | PV St | PV | PV FF St | FF | PV FF | CHP | W FF | BioF | PV W FF St | PV W St | St | H | FF H | FF CHP | FC | W |
Percentage of the combination with regard the total amount of mgs | 12% | 9% | 7% | 6% | 6% | 5% | 5% | 5% | 4% | 4% | 4% | 3% | 3% | 2% | 2% | 2% |
Number of mgs in the combination | 184 | 138 | 106 | 93 | 89 | 82 | 76 | 72 | 61 | 59 | 58 | 47 | 42 | 38 | 34 | 29 |
Legend | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Remote | Community | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | Subtotal MGs by Latitude | |||||||||||||||||
C&I | Utility | ||||||||||||||||||||||||||||||||||
Military | Testbed | ||||||||||||||||||||||||||||||||||
Campus | |||||||||||||||||||||||||||||||||||
Latitudes 60–90° N | 0 | 0 | 1 | 0 | 2 | 0 | 11 | 1 | 7 | 0 | 0 | 0 | 31 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 10 | 0 | 18 | 0 | 0 | 0 | 1 | 0 | 84 | 6 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 5 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 4 | 1 | ||
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |||||||||||||||||||
Latitudes 30–60° N | 7 | 22 | 2 | 10 | 10 | 14 | 4 | 4 | 15 | 4 | 1 | 37 | 19 | 0 | 0 | 5 | 14 | 6 | 9 | 8 | 2 | 8 | 7 | 2 | 25 | 1 | 6 | 3 | 0 | 1 | 5 | 4 | 126 | 129 | |
39 | 13 | 11 | 0 | 9 | 3 | 31 | 3 | 2 | 1 | 21 | 1 | 0 | 1 | 0 | 0 | 4 | 1 | 12 | 4 | 17 | 13 | 1 | 0 | 0 | 1 | 2 | 0 | 26 | 0 | 2 | 0 | 177 | 41 | ||
4 | 3 | 6 | 1 | 2 | 1 | 17 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 7 | 2 | 4 | 2 | 3 | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 2 | 0 | 46 | 20 | ||
10 | 6 | 5 | 6 | 1 | 20 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 2 | 6 | 1 | 62 | |||||||||||||||||||
Latitudes 0–30° N | 30 | 10 | 40 | 40 | 20 | 6 | 0 | 1 | 24 | 3 | 0 | 0 | 8 | 1 | 61 | 2 | 14 | 2 | 7 | 0 | 0 | 2 | 19 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 7 | 0 | 230 | 69 | |
7 | 8 | 6 | 1 | 2 | 1 | 6 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 25 | 13 | ||
1 | 1 | 1 | 0 | 2 | 1 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 5 | ||
2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |||||||||||||||||||
Latitudes 0–30° S | 16 | 3 | 10 | 0 | 20 | 2 | 0 | 0 | 17 | 1 | 0 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 4 | 1 | 2 | 1 | 9 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 92 | 10 | |
2 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | |||||||||||||||||||
Latitudes 30–90° S | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 6 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 5 | |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | ||
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||
Subtotal MGs per combination and segment | 54 | 37 | 54 | 50 | 54 | 22 | 15 | 6 | 66 | 8 | 1 | 37 | 69 | 4 | 62 | 7 | 35 | 9 | 21 | 10 | 6 | 12 | 36 | 6 | 39 | 2 | 24 | 4 | 0 | 1 | 17 | 4 | |||
48 | 21 | 18 | 1 | 14 | 4 | 38 | 4 | 7 | 2 | 21 | 1 | 0 | 2 | 1 | 1 | 4 | 1 | 14 | 4 | 18 | 15 | 1 | 3 | 0 | 1 | 3 | 0 | 26 | 0 | 2 | 2 | ||||
5 | 5 | 7 | 1 | 4 | 2 | 22 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 4 | 8 | 2 | 5 | 2 | 3 | 0 | 1 | 0 | 0 | 4 | 1 | 1 | 0 | 3 | 0 | ||||
14 | 1 | 5 | 8 | 1 | 20 | 1 | 0 | 0 | 3 | 2 | 0 | 0 | 2 | 6 | 1 | ||||||||||||||||||||
Subtotal MGs per combination | 184 | 138 | 106 | 93 | 89 | 82 | 76 | 72 | 61 | 59 | 58 | 47 | 42 | 38 | 34 | 29 |
Latitudes | PV | Wind | Fuel Cell | Fossil Fuel | Micro Turbines | CHP | Solar Thermal | Hydro | Biomass Biofuel | Storage |
---|---|---|---|---|---|---|---|---|---|---|
ALL | 56 | 24 | 7 | 42 | 2 | 16 | 0.5 | 9 | 7 | 42 |
60–90° N | 12.2 | 40.7 | 0 | 83.7 | 0 | 22 | 0 | 17 | 4.9 | 11.4 |
45–60° N | 33.7 | 37.8 | 4.7 | 56.4 | 0 | 15.7 | 1.7 | 27.3 | 6.4 | 44.2 |
30–45° N | 57.9 | 20.5 | 13 | 33 | 3 | 26.6 | 0.8 | 3.5 | 2.26 | 49 |
15–30° N | 65.6 | 18.4 | 1.8 | 26.7 | 0.3 | 1.5 | 0.3 | 3.3 | 21.1 | 30.6 |
0–15° N | 77.4 | 19.4 | 1.1 | 59.1 | 2.15 | 3.2 | 0 | 18.3 | 8.6 | 44.1 |
0–15° S | 66.3 | 16.3 | 0 | 48.8 | 1.25 | 2.5 | 0 | 27.5 | 3.75 | 40 |
15–30° S | 76.7 | 20 | 1.7 | 48.3 | 0 | 0 | 0 | 3.3 | 0 | 56.7 |
30–45° S | 63.8 | 52.8 | 0 | 63.9 | 2.8 | 0 | 0 | 2.8 | 2.8 | 63.9 |
45–60° S | 0 | 100 | 0 | 100 | 0 | 0 | 0 | 66.7 | 0 | 0 |
60–75° S | 0 | 100 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
75–90° S | 50 | 75 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
Segment | PV | Wind | Fuel Cell | Fossil Fuel | Micro Turbines | CHP | Solar Thermal | Hydro | Biomass Biofuel | Storage |
---|---|---|---|---|---|---|---|---|---|---|
Remote | 51.6 | 31.1 | 0.6 | 57 | 0.45 | 5.83 | 0 | 16 | 11.7 | 32.8 |
Community | 67 | 18 | 7.2 | 26.7 | 3.2 | 30.7 | 0.29 | 6.97 | 6.7 | 44.6 |
C&I | 52.9 | 16 | 14.2 | 29.6 | 0.7 | 17.5 | 0.73 | 1.1 | 1.8 | 47.5 |
Campus | 50 | 12.3 | 15.1 | 24.5 | 3.77 | 35.9 | 1.89 | 0.94 | 0.94 | 36.8 |
Military | 45.8 | 21.7 | 7.23 | 62.7 | 2.41 | 13.3 | 1.2 | 0 | 3.61 | 34.9 |
Utility | 51.8 | 24.7 | 3.53 | 23.5 | 1.18 | 5.88 | 0 | 10.6 | 4.71 | 69.4 |
Testbed | 78.6 | 46.4 | 26.8 | 48.2 | 5.36 | 8.93 | 3.57 | 7.14 | 3.57 | 82.1 |
Generation Technology | All Segments | Remote | Community | C&I | Campus | Utility | Military | Testbed |
---|---|---|---|---|---|---|---|---|
Total | 0.96 | 0.74 | 0.64 | 1 | 2 | 1.85 | 5.15 | 0.24 |
PV | 0.18 | 0.14 | 0.11 | 0.2 | 0.29 | 1.31 | 1.18 | 0.04 |
Wind | 0.3 | 0.4 | 0.12 | 0.03 | 0.02 | 3.87 | 0.3 | 0.08 |
Fuel Cell | 0.4 | 0.13 | 0.23 | 0.5 | 0.4 | 0.03 | 0.6 | 0.01 |
Fossil Fuel | 1.3 | 1.05 | 0.7 | 3.6 | 2.6 | 1.2 | 3 | 0.16 |
Microturbines | 0.11 | 0.11 | 0.25 | 0.09 | 3 | - | 2.65 | 0.07 |
CHP | 1 | 1.11 | 0.4 | 2 | 5.2 | 0.4 | 6.1 | 0.22 |
Solar Thermal | 0.1 | - | - | 0.18 | 0.06 | - | 0.23 | 0.01 |
Hydro | 0.9 | 0.9 | 0.9 | 1 | 1.8 | 8.6 | - | 0.01 |
Biomass and Biofuel | 0.03 | 0.03 | 1 | 1.43 | - | 0.55 | 5.6 | - |
Storage | 0.4 | 0.66 | 0.25 | 0.23 | 0.51 | 1 | 0.5 | 0.25 |
Percentiles | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GDP Ranges (Billion USD) | 0 | 1 | 5 | 10 | 25 | 50 | 75 | 90 | 95 | 99 | 100 | Number of Microgrids |
0–10 | 0.03 | 0.03 | 0.05 | 0.2 | 0.4 | 1.3 | 5 | 11 | 27 | 102 | 104 | 99 |
10–100 | <0.01 | <0.01 | <0.01 | 0.02 | 0.12 | 1.1 | 3.83 | 17 | 21 | 200 | 200 | 66 |
100–1000 | <0.01 | <0.01 | <0.01 | <0.01 | 0.04 | 0.26 | 1.98 | 23 | 60 | 202 | 270 | 170 |
1000–10,000 | <0.01 | <0.01 | <0.01 | <0.01 | 0.03 | 0.4 | 2.26 | 9 | 21 | 100 | 160 | 488 |
>10,000 | 0.01 | 0.01 | 0.07 | 0.2 | 0.4 | 1.6 | 6.6 | 22 | 47 | 91 | 300 | 780 |
Most Used Combinations | Second Most Used Combinations | Third Most Used Combinations | ||||
---|---|---|---|---|---|---|
Remote | C13 (FF [1.05 MW]–H [0.9 MW]) | C7 (W [0.4 MW]–FF [1.05 MW]) | C5 (PV [0.14 MW]–FF [1.05 MW]) | |||
Community | C6 (CHP [0.4 MW]) | C1 (PV [0.11 MW]–St [0.25 MW]) | C3 (PV [0.11 MW]–FF [0.7 MW]–St [0.25 MW]) | |||
C&I | C1 (PV [0.2 MW]–St [0.23 MW]) | C4 (FF [3.6 MW]) | C15 (FC [0.5 MW]) | |||
Campus | C6 (CHP [5.2 MW] | C1 (PV [0.29 MW]–St [0.51 MW]) | C2 (PV [0.29 MW]) | C4 (FF [2.6 MW]) | C15 (FC [0.4 MW]) | |
Military | C4 (FF [3 MW]) | C2 (PV [1.18 MW]) | C1 (PV [1.18 MW]–St [0.5 MW]) | |||
Utility | C1 (PV [1.31 MW]–St [1 MW]) | C11 (St [1 MW]) | C10 (PV [1.31 MW]–W [3.87 MW]–St [1 MW]) | |||
Testbed | C9 (PV [0.04 MW]–W [0.08 MW]–FF [0.16 MW]–St [0.25 MW]) | C10 (PV [0.04 MW]–W [0.08 MW]–St [0.25 MW]) | C11 (ST [0.25 MW]) | C1 (PV [0.04 MW]–St [0.25 MW]) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpintero-Rentería, M.; Santos-Martín, D.; Chinchilla, M.; Rebollal, D. Microgrid Infrastructure Compendium Analysis with a Model Creation Tool and Guideline Based on Machine Learning Techniques. Energies 2019, 12, 4509. https://doi.org/10.3390/en12234509
Carpintero-Rentería M, Santos-Martín D, Chinchilla M, Rebollal D. Microgrid Infrastructure Compendium Analysis with a Model Creation Tool and Guideline Based on Machine Learning Techniques. Energies. 2019; 12(23):4509. https://doi.org/10.3390/en12234509
Chicago/Turabian StyleCarpintero-Rentería, Miguel, David Santos-Martín, Mónica Chinchilla, and David Rebollal. 2019. "Microgrid Infrastructure Compendium Analysis with a Model Creation Tool and Guideline Based on Machine Learning Techniques" Energies 12, no. 23: 4509. https://doi.org/10.3390/en12234509
APA StyleCarpintero-Rentería, M., Santos-Martín, D., Chinchilla, M., & Rebollal, D. (2019). Microgrid Infrastructure Compendium Analysis with a Model Creation Tool and Guideline Based on Machine Learning Techniques. Energies, 12(23), 4509. https://doi.org/10.3390/en12234509