Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout
Abstract
:1. Introduction
2. Literature Review
2.1. Green Building and Energy-Efficiency-Based Planning
2.2. Green Performance Evaluation of Site Layout Planning
2.3. Green Performance Attributes Identified from Previous Research
3. Categories and Attributes in the Green Performance Evaluation System
3.1. Definitions of Categories and Attributes
Category 1 (C1): Energy Conservation and Environmental Protection
Category 2 (C2): Construction Efficiency
Category 3 (C3): Economic Intensity Degree
Category 4 (C4): Space Intensity
Category 5 (C5): People-Oriented Principles
Category 6 (C6): Total Control of Process
3.2. Hierarchy Structure for a Green Performance Evaluation System
3.3. Attributes Classification
4. Development of the Green Performance Evaluation System
4.1. Evaluation Rule for Attributes by the Fuzzy Set
4.2. Derivation of Green Performance Evaluation Using AHP
5. System Verification of the Construction Site Layout Planning
5.1. Description of Site Layout Plans
5.2. Results of the Case Study
5.3. Case Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cong, X.; Mu, H.; Li, H.; Liu, C. Analysis on CO2 Emissions of Construction Industry in China Based on Life Cycle Assessment. In Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Bakar, N.N.A.; Hassan, M.Y.; Abdullah, H.; Rahman, H.A.; Abdullah, M.P.; Hussin, F.; Bandi, M. Energy efficiency index as an indicator for measuring building energy performance: A review. Renew. Sustain. Energy Rev. 2015, 44, 1–11. [Google Scholar] [CrossRef]
- Horta, I.M.; Camanho, A.S.; Dias, T.G. Residential building resource consumption: A comparison of Portuguese municipalities’ performance. Cities 2016, 50, 54–61. [Google Scholar] [CrossRef]
- Wang, C.C.; Tan, X. Estimating Carbon Footprint in the Construction Process of A Green Educational Building. In Proceedings of the 2012 International Conference on Construction and Real Estate Management; China Architecture and Building Press: Kansas City, MO, USA, 2012. [Google Scholar]
- Heravi, G.; Nafisi, T.; Mousavi, R. Evaluation of energy consumption during production and construction of concrete and steel frames of residential buildings. Energy Build. 2016, 130, 244–252. [Google Scholar] [CrossRef]
- Singh, R.; Lazarus, I.J. Energy-Efficient Building Construction and Embodied Energy. In Sustainability through Energy-Efficient Buildings; CRC Press: Boca Raton, FL, USA, 2018; pp. 89–107. [Google Scholar]
- Macias, J.; Iturburu, L.; Rodriguez, C.; Agdas, D.; Boero, A.; Soriano, G. Embodied and operational energy assessment of different construction methods employed on social interest dwellings in Ecuador. Energy Build. 2017, 151, 107–120. [Google Scholar] [CrossRef]
- Chang, Y.; Ries, R.J.; Lei, S. The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy Build. 2012, 55, 790–798. [Google Scholar] [CrossRef]
- Wu, J.; Lv, J.-Y.; Ye, Z.-K.; Miao, R. Optimization Design of Facilities Layout in a Certain Machining Shop. DEStech Trans. Comput. Sci. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Ning, X.; Lam, K.; Lam, M.C.K. A decision-Making System for Construction Site Layout Planning. Autom. Constr. 2011, 20, 459–473. [Google Scholar] [CrossRef]
- Wang, L.; Bao, H. Construction Pollution and Green Construction Technology. Appl. Mech. Mater. 2013, 438, 1751–1754. [Google Scholar] [CrossRef]
- Huo, X.; Ann, T.; Wu, Z. An empirical study of the variables affecting site planning and design in green buildings. J. Clean. Prod. 2018, 175, 314–323. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Wu, M. Mitigating construction dust pollution: State of the art and the way forward. J. Clean. Prod. 2016, 112, 1658–1666. [Google Scholar] [CrossRef]
- Farmakis, P.M.; Chassiakos, A.P. Dynamic multi-objective layout planning of construction sites. Procedia Eng. 2017, 196, 674–681. [Google Scholar] [CrossRef]
- Huang, C.; Wong, C. Optimisation of site layout planning for multiple construction stages with safety considerations and requirements. Autom. Constr. 2015, 53, 58–68. [Google Scholar] [CrossRef]
- Abotaleb, I.; Nassar, K.; Hosny, O. Layout optimization of construction site facilities with dynamic freeform geometric representations. Autom. Constr. 2016, 66, 15–28. [Google Scholar] [CrossRef]
- Ning, X.; Lam, K.C. Cost–safety trade-off in unequal-area construction site layout planning. Autom. Constr. 2013, 32, 96–103. [Google Scholar] [CrossRef]
- Kibert, C.J. Sustainable Construction: Green Build. Design and Delivery, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Caiado, R.G.G.; de Freitas Dias, R.; Mattos, L.V.; Quelhas, O.L.G.; Leal Filho, W. Towards sustainable development through the perspective of eco-efficiency-A systematic literature review. J. Clean. Prod. 2017, 165, 890–904. [Google Scholar] [CrossRef]
- Henry, A.; Frascaria-Lacoste, N. Comparing green structures using life cycle assessment: A potential risk for urban biodiversity homogenization? International J. Life Cycle Assess. 2012, 17, 949–950. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.-Y. Green building research–current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P. Critical analysis of green building research trend in construction journals. Habitat Int. 2016, 57, 53–63. [Google Scholar] [CrossRef]
- Kumanayake, R.; Luo, H. A tool for assessing life cycle CO2 emissions of buildings in Sri Lanka. Build. Environ. 2018, 128, 272–286. [Google Scholar] [CrossRef]
- Kumanayake, R.; Luo, H. Life cycle carbon emission assessment of a multi-purpose university building: A case study of Sri Lanka. Front. Eng. Manag. 2018, 5, 381–393. [Google Scholar] [CrossRef]
- Sandanayake, M.; Zhang, G.; Setunge, S. Environmental emissions at foundation construction stage of buildings–Two case studies. Build. Environ. 2016, 95, 189–198. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Li, H.; Shirowzhan, S.; Tam, V.W. Methods for monitoring construction off-road vehicle emissions: A critical review for identifying deficiencies and directions. Environ. Sci. Pollut. Res. 2019, 26, 15779–15794. [Google Scholar] [CrossRef] [PubMed]
- Avetisyan, H.; Skibniewski, M.; Mozaffarpour, M. Analyzing sustainability of construction equipment in the state of California. Front. Eng. Manag. 2017, 4, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Diaz, N.; Hasan, M. Proposing a “lean and green” framework for equipment cost analysis in construction. Front. Eng. Manag. 2019, 6, 384–394. [Google Scholar] [CrossRef]
- You, W.; Xiao, X. Study on the Development Situation and Prospects for Green Construction. In Proceedings of the International Conference on Construction and Real Estate Management (ICCREM), Lulea, Sweden, 11–12 August 2015; pp. 272–281. [Google Scholar]
- Khan, M.A.; Sepasgozar, S.; Wang, C. Evolution of Building Rating Tools: A next generation Rating Model. In Proceedings of the 42nd AUBEA Conference 2018: Educating Building Professionals for the future in the Globalised World, Singapore, 26–28 September 2018; pp. 285–293. [Google Scholar]
- Heralova, R.S. Life cycle costing as an important contribution to feasibility study in construction projects. Procedia Eng. 2017, 196, 565–570. [Google Scholar] [CrossRef]
- Fifield, L.-J.; Lomas, K.J.; Giridharan, R.; Allinson, D. Hospital wards and off-site modular construction: Summertime overheating and energy efficiency. Build. Environ. 2018, 141, 28–44. [Google Scholar] [CrossRef]
- Wang, W.; Zmeureanu, R.; Rivard, H. Applying multi-objective genetic algorithms in green building design optimization. Build. Environ. 2005, 40, 1512–1525. [Google Scholar] [CrossRef]
- Wang, W.; Rivard, H.; Zmeureanu, R. Floor shape optimization for green building design. Adv. Eng. Inform. 2006, 20, 363–378. [Google Scholar] [CrossRef]
- Robichaud, L.B.; Anantatmula, V.S. Greening project management practices for sustainable construction. J. Manag. Eng. 2010, 27, 48–57. [Google Scholar] [CrossRef]
- Assad, M.; Hosny, O.; Elhakeem, A.; El Haggar, S. Green building design in Egypt from cost and energy perspectives. Archit. Eng. Des. Manag. 2015, 11, 21–40. [Google Scholar] [CrossRef]
- Huo, X.; Ann, T.; Wu, Z. A comparative analysis of site planning and design among green building rating tools. J. Clean. Prod. 2017, 147, 352–359. [Google Scholar] [CrossRef]
- Montoya, M. Green Build. Fundamentals: A Practical Guide to Understanding and Applying Fundamental Sustainable Constr. Practices and the LEED Green Build. Rating System; Prentice Hall: New Jersey, NY, USA, 2010. [Google Scholar]
- Khan, M.A.; Sepasgozar, S.; Wang, C. Comparative evaluation of building rating tools in different contexts: Cases of LEED and SEED. In Proceedings of the 42nd AUBEA Conference 2018, Curtin University, Singapore, 26–28 September 2018. [Google Scholar]
- Guggemos, A.A.; Horvath, A. Decision-support tool for assessing the environmental effects of constructing commercial buildings. J. Archit. Eng. 2006, 12, 187–195. [Google Scholar] [CrossRef]
- Andayesh, M.; Sadeghpour, F. Dynamic site layout planning through minimization of total potential energy. Autom. Constr. 2013, 31, 92–102. [Google Scholar] [CrossRef]
- Xu, J.; Li, Z. Multi-objective dynamic construction site layout planning in fuzzy random environment. Autom. Constr. 2012, 27, 155–169. [Google Scholar] [CrossRef]
- Yahya, M.; Saka, M. Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights. Autom. Constr. 2014, 38, 14–29. [Google Scholar] [CrossRef]
- Li, Z.; Shen, W.; Xu, J.; Lev, B. Bilevel and multi-objective dynamic construction site layout and security planning. Autom. Constr. 2015, 57, 1–16. [Google Scholar] [CrossRef]
- Papadaki, I.N.; Chassiakos, A.P. Multi-objective construction site layout planning using genetic algorithms. Procedia Eng. 2016, 164, 20–27. [Google Scholar] [CrossRef]
- Carmichael, D.G.; Mustaffa, N.K. Emissions and production penalties/bonuses associated with non-standard earthmoving loading policies. Constr. Innov. 2018, 18. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Blair, J. Measuring non-road diesel emissions in the construction industry: A synopsis of the literature. Int. J. Constr. Manag. 2019, 1–16. [Google Scholar] [CrossRef]
- Lam, K.C.; Ning, X.; Ng, T. The application of the ant colony optimization algorithm to the construction site layout planning problem. Constr. Manag. Econ. 2007, 25, 359–374. [Google Scholar] [CrossRef]
- Sanad, H.M.; Ammar, M.A.; Ibrahim, M.E. Optimal construction site layout considering safety and environmental aspects. J. Constr. Eng. Manag. 2008, 134, 536–544. [Google Scholar] [CrossRef]
- Hammad, A.; Akbarnezhad, A.; Rey, D. A multi-objective mixed integer nonlinear programming model for construction site layout planning to minimise noise pollution and transport costs. Autom. Constr. 2016, 61, 73–85. [Google Scholar] [CrossRef]
- Huo, X.; Ann, T.W.; Darko, A.; Wu, Z. Critical factors in site planning and design of green buildings: A case of China. J. Clean. Prod. 2019, 222, 685–694. [Google Scholar] [CrossRef]
- Abduh, M.; Ervianto, W.I.; Chomistriana, D.; Rahardjo, A. Green construction assessment model for improving sustainable practices of the Indonesian Government construction projects. In Proceedings of the 22nd Conference of the International Group for Lean Construction, Oslo, Norway, 25–27 June 2014. [Google Scholar]
- Yan, J. The Evaluation Model of the Pile Foundation Green Construction Scheme Based on the Improved Value Engineering Theory. In Proceedings of the 2015 8th IEEE International Conference on Intelligent Computation Technology and Automation (ICICTA), Nanchang, China, 14–15 June 2015. [Google Scholar]
- Sepasgozar, S.M.E.; Loosemore, M. The role of customers and vendors in modern construction equipment technology diffusion. Eng. Constr. Archit. Manag. 2017, 24, 1203–1221. [Google Scholar] [CrossRef]
- Li, Y.; Oberheitmann, A. Challenges of rapid economic growth in China: Reconciling sustainable energy use, environmental stewardship and social development. Energy Policy 2009, 37, 1412–1422. [Google Scholar] [CrossRef]
- Ministry of Construction of the People’s Republic of China. Green Constr. Guideline [S]; 2007. Available online: http://www.mohurd.gov.cn/wjfb/200709/t20070914_158260.html (accessed on 4 December 2019).
- Lu, J.; Cai, X. Projects Evaluation of Mining Area’s Industry Square Layout Design Based on Grey Incidence Analysis Method. Coal Technol. 2011, 1, 71–73. [Google Scholar]
- Xu, J.; Song, X. Suggestions for temporary construction facilities’ layout problems in large-scale construction projects. J. Constr. Eng. Manag. 2014, 140, 06014001. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Shen, L. Embedding “green” in project-based organizations: The way ahead in the construction industry? J. Clean. Prod. 2015, 107, 420–427. [Google Scholar] [CrossRef]
- Tam, C.; Tam, V.W.; Tsui, W. Green construction assessment for environmental management in the construction industry of Hong Kong. Int. J. Proj. Manag. 2004, 22, 563–571. [Google Scholar] [CrossRef]
- Su, X.; rahman Andoh, A.; Cai, H.; Pan, J.; Kandil, A.; Said, H.M. GIS-based dynamic construction site material layout evaluation for building renovation projects. Autom. Constr. 2012, 27, 40–49. [Google Scholar] [CrossRef]
- Sjøbakk, B.; Skjelstad, L. Proposing a standard template for construction site layout: A case study of a Norwegian contractor. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Tokyo, Japan, 7–9 September 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Tompkins, J.A. Facilities Planning, 4th ed.; Wiley: New Delhi, India, 2013. [Google Scholar]
- Dunker, T.; Radons, G.; Westkämper, E. Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem. Eur. J. Oper. Res. 2005, 165, 55–69. [Google Scholar] [CrossRef]
- Muther, R. Systematic Layout Planning; CBI publishing company: Boston, MA, USA, 1973. [Google Scholar]
- Li, Q.; Liu, H. Workshop Facility Layout Optimization Design Based on SLP and Flexsim. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 8.1–8.7. [Google Scholar]
- Wu, L.; Feng, Y.; Li, G. The evaluation of layout scheme in the construction sites based on the Analytic Hierarchy Process (AHP). J. Zhejiang Univ. Technol. 2010, 38, 111–118. [Google Scholar]
- Chakraborty, S.; Banik, B. An analytic hierarchy process (AHP) based approach for optimal facility layout design. J. Inst. Eng. (India) Part PR Prod. Eng. Div. 2007, 88, 12–18. [Google Scholar]
- Paul, W.L.; Taylor, P.A. A comparison of occupant comfort and satisfaction between a green building and a conventional building. Build. Environ. 2008, 43, 1858–1870. [Google Scholar] [CrossRef]
- Cambron, K.E.; Evans, G.W. Layout design using the analytic hierarchy process. Comput. Ind. Eng. 1991, 20, 211–229. [Google Scholar] [CrossRef]
- Li, X.; Song, Z.; Wang, T.; Zheng, Y.; Ning, X. Health impacts of construction noise on workers: A quantitative assessment model based on exposure measurement. J. Clean. Prod. 2016, 135, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Kwon, N.; Park, M.; Lee, H.S.; Ahn, J.; Shin, M. Construction noise management using active noise control techniques. J. Constr. Eng. Manag. 2016, 142, 04016014. [Google Scholar] [CrossRef]
- Elbeltagi, E.; Hegazy, T.; Eldosouky, A. Dynamic layout of construction temporary facilities considering safety. J. Constr. Eng. Manag. 2004, 130, 534–541. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.; Zeng, X. Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf. Sci. 2014, 271, 125–142. [Google Scholar] [CrossRef]
- Thanki, S.; Govindan, K.; Thakkar, J. An investigation on lean-green implementation practices in Indian SMEs using analytical hierarchy process (AHP) approach. J. Clean. Prod. 2016, 135, 284–298. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
Attribute’s name (Category Index) | GCG (2007) [56] | Sanad et al. (2008) [49] | Lu and Cai (2011) [57] | Xu & Song (2014) [58] | Huang & Wong (2015) [15] | Li et al. (2015) [44] | Hammad et al. (2016) [50] | Huo et al. (2017, 2018) [12,37] |
---|---|---|---|---|---|---|---|---|
Energy optimization rate/ratio (A11) | √ | √ | ||||||
Utilization rate of resource saving facilities (A12) | √ | √ | √ | |||||
Effectiveness of sewage disposal and solid waste collection (A13) | √ | √ | √ | √ | ||||
Green coverage ratio (A14) | √ | |||||||
Effectiveness of dust control (A15) | √ | √ | √ | √ | √ | |||
Effectiveness of temporary road layout (A21) | √ | √ | √ | |||||
Layout integration of facilities (A22) | √ | √ | √ | √ | ||||
Effectiveness of temporary drainage facilities (A23) | √ | √ | ||||||
Location rationality of machinery (A24) | √ | √ | √ | |||||
The ratio of existing resource utilization (A31) | √ | |||||||
The cost saving of temporary facilities (A32) | √ | √ | ||||||
Total transportation cost saving (A33) | √ | √ | √ | √ | ||||
The flexibility of site space (A41) | √ | √ | √ | |||||
Degree of space utilized (A42) | √ | √ | √ | √ | ||||
Average proportion of site occupied by site facilities (A43) | √ | √ | √ | |||||
Noise emissions (A51) | √ | √ | √ | √ | √ | |||
Effectiveness of noise reduction measures (A52) | √ | √ | √ | √ | √ | |||
Employee satisfaction (A53) | √ | √ | ||||||
Separation of living area from construction area (A54) | √ | √ | √ | |||||
Status of safety management measures (A55) | √ | √ | √ | √ | √ | |||
The ability of the site layout to respond to the construction process (A61) | √ | √ | ||||||
The effectiveness of the resource schedule plans (A62) | √ | √ | ||||||
The efficiency of the operation equipment transition (A63) | √ | √ | √ |
Attribute Categories | Attribute Numbers |
---|---|
Quantitative | A11, A12, A14, A31, A33, A43, A51 |
Qualitative | A13, A15, A21, A22, A23, A24, A32, A41, A42, A52, A53, A54, A55, A61, A62, A63 |
Quantitative Attributes | Membership Function | Quantitative Attributes | Membership Function | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | G | E | F | P | G | E | ||||
A11 | <10 | 1 | 0 | 0 | 0 | A12 | <5 | 1 | 0 | 0 | 0 |
[10,15) | 0 | 1 | 0 | 0 | [5,10) | 0 | 1 | 0 | 0 | ||
[15,25) | 0 | 0 | 1 | 0 | [10,15) | 0 | 0 | 1 | 0 | ||
≥25 | 0 | 0 | 0 | 1 | ≥15 | 0 | 0 | 0 | 1 | ||
A14 | <10 | 1 | 0 | 0 | 0 | A31 | <3 | 1 | 0 | 0 | 0 |
[10,15) | 0 | 1 | 0 | 0 | [3,5) | 0 | 1 | 0 | 0 | ||
[15,20) | 0 | 0 | 1 | 0 | [5,10) | 0 | 0 | 1 | 0 | ||
≥20 | 0 | 0 | 0 | 1 | ≥10 | 0 | 0 | 0 | 1 | ||
A33 | <1 | 1 | 0 | 0 | 0 | A43 | <70 | 1 | 0 | 0 | 0 |
[1,2) | 0 | 1 | 0 | 0 | [70,80) | 0 | 1 | 0 | 0 | ||
[2,3) | 0 | 0 | 1 | 0 | [80,90) | 0 | 0 | 1 | 0 | ||
≥3 | 0 | 0 | 0 | 1 | ≥90 | 0 | 0 | 0 | 1 | ||
A51 | >5 | 1 | 0 | 0 | 0 | ||||||
≤1 | 0 | 1 | 0 | 0 | |||||||
(1,3] | 0 | 0 | 1 | 0 | |||||||
(3,5] | 0 | 0 | 0 | 1 |
Quantitative Attributes | Value for Attributes | Evaluation Vector |
---|---|---|
A11 (%) | 17% | [0 1 0 0] |
A12 (%) | 0 | [0 0 0 1] |
A14 (%) | 0 | [0 0 0 1] |
A31 (%) | 5% | [1 0 0 0] |
A33 (%) | 3.28% | [1 0 0 0] |
A43 (%) | 94% | [1 0 0 0] |
A51 (dB) | 0.68 | [0 0 1 0] |
Qualitative Attributes | Evaluation Vector | Qualitative Attributes | Evaluation Vector |
---|---|---|---|
A13 | [0 0 0 1] | A42 | [0.3 0.5 0.2 0] |
A15 | [0.6 0.4 0 0] | A52 | [0.2 0.2 0.4 0] |
A21 | [0.7 0.3 0 0] | A53 | [0 0.2 0.5 0.3] |
A22 | [0.3 0.6 0.1 0] | A54 | [0 0.1 0.4 0.5] |
A23 | [0.5 0.3 0.2 0] | A55 | [1 0 0 0] |
A24 | [0.8 0.2 0 0] | A61 | [0.6 0.4 0 0] |
A32 | [1 0 0 0] | A62 | [0.3 0.6 0.1 0] |
A41 | [0 0.5 0.3 0.2] | A63 | [0.4 0.5 0.1 0] |
Hierarchy Categories | Weight | Hierarchy Attribute | Weight | Hierarchy Categories | Weight | Hierarchy Attributes | Weight |
---|---|---|---|---|---|---|---|
C1 | 0.43 | A11 | 0.15 | C5 | 0.08 | A51 | 0.43 |
A12 | 0.15 | A52 | 0.13 | ||||
A13 | 0.25 | A53 | 0.21 | ||||
A14 | 0.08 | A54 | 0.12 | ||||
A15 | 0.36 | A55 | 0.11 | ||||
C2 | 0.21 | A21 | 0.29 | C4 | 0.08 | A41 | 0.16 |
A22 | 0.29 | A42 | 0.30 | ||||
A23 | 0.09 | A43 | 0.54 | ||||
A24 | 0.33 | ||||||
C3 | 0.04 | A31 | 0.10 | C6 | 0.16 | A61 | 0.59 |
A32 | 0.33 | A62 | 0.25 | ||||
A33 | 0.57 | A63 | 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.C.; Sepasgozar, S.M.E.; Wang, M.; Sun, J.; Ning, X. Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout. Energies 2019, 12, 4620. https://doi.org/10.3390/en12244620
Wang CC, Sepasgozar SME, Wang M, Sun J, Ning X. Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout. Energies. 2019; 12(24):4620. https://doi.org/10.3390/en12244620
Chicago/Turabian StyleWang, Cynthia Changxin, Samad M.E. Sepasgozar, Mudan Wang, Jun Sun, and Xin Ning. 2019. "Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout" Energies 12, no. 24: 4620. https://doi.org/10.3390/en12244620
APA StyleWang, C. C., Sepasgozar, S. M. E., Wang, M., Sun, J., & Ning, X. (2019). Green Performance Evaluation System for Energy-Efficiency-Based Planning for Construction Site Layout. Energies, 12(24), 4620. https://doi.org/10.3390/en12244620