A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience
Abstract
:1. Introduction
Research Method
- RQ1.
- What are the main causes of EPG faults?
- RQ2.
- What are the most reported faults in the literature?
- RQ3.
- What strategies are used to improve the resilience of EPGs?
2. Resilience Concept under Electrical Power Grid Analysis
- Robustness/Resistance refers to the ability of having strength in order to resist changes without losing stability, i.e., a robust system continues its operation during attacks or failure events, and can resist low-probability events, but with large consequences. In a robust system, if damage occurs the system will resist, but the damage will stay until it is repaired. Consequently, and from an engineering point of view, the robust system can be more fragile than others in terms of different features such as the capacity to recover after an event.
- Reliability refers to the system’s capacity to ensure components’ performance under specific conditions and over a specific period of time. Reliability is related to the accuracy of the system, and if the components are working in a range of conditions then the system security will be ensured.
- Adaptability of control systems is aimed at proper functioning by adjusting their control parameters and algorithms according to uncertain changes. These disturbances can be regarded as undesirable incidents at the process layer, and the system is supposed to adapt itself to those changes.
2.1. Multidisciplinarity of Resilience
2.1.1. Ecology
2.1.2. Organizational
2.1.3. Engineering
2.2. Power Grid Resilience Framework
3. Weaknesses in Electric Power Grids
Faults and Related Causes
- Natural Causes: different types of natural disasters that could lead to a fault in the EPG, such as hurricanes, storms, flooding, earthquakes, tornados, heat waves or solar flares;
- Errors: causes related to human faults or equipment technical malfunction;
- Attacks: cyber-attacks such as denial of service (most common), or human attacks such as terrorism.
4. EPG Resilience
- Prevention and management;
- Monitoring and fault detection;
- Smart grid-based solutions;
- Modeling and simulation.
4.1. Prevention and Management
4.2. Monitoring and Fault Detection
4.3. Smart Grid-Based Solutions
4.4. Modeling and Simulation
4.5. Summary of Power Grid Fault Resolutions vs. Resilience Curve
- Prevention state: In this state, the grid is operating under normal conditions, and it is here that preventive and management actions are applied. This type of actions, showed in Figure 5, will help the system to deal successfully with future events. Also, monitoring actions as well as modeling and simulation can be applied at this stage, since this kind of actions can be helpful to understand how the system will react to an event or to take some pre-event actions [92].
- Degradation state: This state appears until the worst condition the grid will experience. As explained in Section 2.2, in this state, the magnitude of fault is represented and can be calculated with the evaluation of the failure state of grid components during the event. To do this, monitoring and fault detection actions will be taken into consideration so the faults can be located, and grid components can be monitored. If the intensity of the event exceeds the withstanding capability of the grid components, the damaged part could lead to a cascading failure event, and it is important to know where the faults have occurred [131,132].
- Restoration state: When a restoration action is taken, this state begins. Here, the transition between the damaged grid condition and its pre-event condition, i.e., the prevention state, occurs. Different types of actions can be applied to restore the grid to its initial state; however, the use of microgrids and demand response actions have been mentioned in a considerable number of reading articles for this survey. For instance, as mentioned above, microgrids can be used to isolate the affected area from the main grid and avoid a cascading failure event.
- Adaptation state: Finally, the adaptation state occurs when the grid is fully restored and the prevention state starts once more, with the application of the actions mentioned in this subchapter and represented in Figure 5.
5. Conclusions and Research Opportunities
Research Opportunities
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DG | Distributed Generation |
EPG | Electrical Power Grid |
ICTs | Information and Communication Technologies |
LV | Low-Voltage |
NZEB | Net Zero Energy Building |
PV | Photovoltaic System |
SCADA | Supervisory Control and Data Acquisition |
References
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Hare, J.; Shi, X.; Gupta, S.; Bazzi, A. Fault diagnostics in smart micro-grids: A survey. Renew. Sustain. Energy Rev. 2016, 60, 1114–1124. [Google Scholar] [CrossRef]
- Hosseini, S.; Barker, K.; Ramirez-Marquez, J.E. A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 2016, 145, 47–61. [Google Scholar] [CrossRef]
- Abi-Samra, N.C.; Malcolm, W.P. Extreme weather effects on power systems. In Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–5. [Google Scholar]
- Albert, R.; Albert, I.; Nakarado, G.L. Structural vulnerability of the North American power grid. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2004, 69, 025103. [Google Scholar] [CrossRef] [Green Version]
- Crucitti, P.; Latora, V.; Marchiori, M. Model for cascading failures in complex networks. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2004, 69, 4. [Google Scholar] [CrossRef] [Green Version]
- Hines, P.; Balasubramaniam, K.; Sanchez, E.C. Cascading failures in power grids. IEEE Potentials 2009, 28, 24–30. [Google Scholar] [CrossRef]
- Abi-Samra, N.C.; Forsten, K.R.; Entriken, R. Sample Effects of extreme weather on power systems and components, part I: Sample effects on distribution systems. In Proceedings of the 2010 IEEE Power and Energy Society General Meeting, Providence, RI, USA, 25–29 July 2010; Volume 34, pp. 1–34. [Google Scholar]
- Castillo, A. Risk analysis and management in power outage and restoration: A literature survey. Electr. Power Syst. Res. 2014, 107, 9–15. [Google Scholar] [CrossRef]
- Ouyang, M.; Wang, Z. Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliab. Eng. Syst. Saf. 2015, 141, 74–82. [Google Scholar] [CrossRef]
- Maliszewski, P.J.; Perrings, C. Factors in the resilience of electrical power distribution infrastructures. Appl. Geogr. 2012, 32, 668–679. [Google Scholar] [CrossRef]
- Hollnagel, E. Prologue: The Scope of Resilience Engineering. In Resilience Engineering in Practice: A Guidebook; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781409410355. [Google Scholar]
- Wang, J.; Zuo, W.; Rhode-Barbarigos, L.; Lu, X.; Wang, J.; Lin, Y. Literature review on modeling and simulation of energy infrastructures from a resilience perspective. Reliab. Eng. Syst. Saf. 2019, 183, 360–373. [Google Scholar] [CrossRef]
- Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Inf. Softw. Technol. 2015, 64, 1–18. [Google Scholar] [CrossRef]
- Hodgson, D.; McDonald, J.L.; Hosken, D.J. What do you mean, “resilient”? Trends Ecol. Evol. 2015, 30, 503–506. [Google Scholar] [CrossRef]
- Madni, A.M.; Jackson, S. Towards a conceptual framework for resilience engineering. IEEE Syst. J. 2009, 3, 181–191. [Google Scholar] [CrossRef]
- Bishop, M.; Carvalho, M.; Ford, R.; Mayron, L.M. Resilience is More than Availability. In Proceedings of the New Security Paradigms Workshop, Marin County, CA, USA, 12–15 September 2011; pp. 95–104. [Google Scholar]
- Arghandeh, R.; von Meier, A.; Mehrmanesh, L.; Mili, L. On the definition of cyber-physical resilience in power systems. Renew. Sustain. Energy Rev. 2016, 58, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Panteli, M.; Mancarella, P. Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events. IEEE Syst. J. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Shahidehpour, M.; Li, Z.; Liu, X.; Cao, Y.; Bie, Z. Microgrids for Enhancing the Power Grid Resilience in Extreme Conditions. IEEE Trans. Smart Grid 2017, 8, 589–597. [Google Scholar]
- Francis, R.; Bekera, B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014, 121, 90–103. [Google Scholar] [CrossRef]
- Molyneaux, L.; Brown, C.; Wagner, L.; Foster, J. Measuring resilience in energy systems: Insights from a range of disciplines. Renew. Sustain. Energy Rev. 2016, 59, 1068–1079. [Google Scholar] [CrossRef] [Green Version]
- Southwick, S.; Charney, D. Resilience: The Science of Mastering Life’s Greatest Challenges; Cambridge University Press: Cambridge, UK, 2018; ISBN 9781108593465. [Google Scholar]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol. Monogr. 1992, 62, 447–502. [Google Scholar] [CrossRef]
- Grimm, V.; Wissel, C. Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 1997, 109, 323–334. [Google Scholar] [CrossRef]
- Standish, R.J.; Hobbs, R.J.; Mayfield, M.M.; Bestelmeyer, B.T.; Suding, K.N.; Battaglia, L.L.; Eviner, V.; Hawkes, C.V.; Temperton, V.M.; Cramer, V.A.; et al. Resilience in ecology: Abstraction, distraction, or where the action is? Biol. Conserv. 2014, 177, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Carpenter, S.; Anderies, J.; Abel, N.; Cumming, G.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.D.; Pritchard, R. Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Ecol. Soc. 2002, 6, art14. [Google Scholar] [CrossRef]
- Sheffi, Y. The resilient enterprise: Overcoming vulnerability for competitive advantage. Choice Rev. Online 2006, 43, 3481. [Google Scholar]
- Nemeth, D.G.; Olivier, T.W. Innovative Approaches to Individual and Community Resilience from Theory to Practice; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128039137. [Google Scholar]
- Patterson, E.S.; Woods, D.D.; Cook, R.I.; Render, M.L. Collaborative cross-checking to enhance resilience. Cogn. Technol. Work 2007, 9, 155–162. [Google Scholar] [CrossRef]
- Sterk, M.; van de Leemput, I.A.; Peeters, E.T. How to conceptualize and operationalize resilience in socio-ecological systems? Curr. Opin. Environ. Sustain. 2017, 28, 108–113. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Principles and criteria for assessing urban energy resilience: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef] [Green Version]
- ASME Innovative Technologies Institute. All Hazards Risk and Resilience: Prioritizing Critical Infrastructure Using the RAMCAP Plus; ASME: New York, NY, USA, 2009; ISBN 9780791802878. [Google Scholar]
- Bush, W. Critical Infrastructure Resilience Final Report and Recommendations; National Infrastructure Advisory Council: Washington, DC, USA, 2009. [Google Scholar]
- Youn, B.; Hu, C.; Wang, P. Resilience-Driven System Design of Complex Engineered Systems. J. Mech. Des. 2011, 133, 101011. [Google Scholar] [CrossRef]
- Cabinet Office. Keeping the Country Running: Natural Hazards and Infrastructure; Cabinet Office: London, UK, 2011. [Google Scholar]
- Jufri, F.H.; Kim, J.S.; Jung, J. Analysis of determinants of the impact and the grid capability to evaluate and improve grid resilience from extreme weather event. Energies 2017, 10, 1779. [Google Scholar] [CrossRef] [Green Version]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, M.; Dueñas-Osorio, L.; Min, X. A three-stage resilience analysis framework for urban infrastructure systems. Struct. Saf. 2012, 36–37, 23–31. [Google Scholar] [CrossRef]
- Panteli, M.; Trakas, D.N.; Mancarella, P.; Hatziargyriou, N.D. Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies. Proc. IEEE 2017, 105, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Panteli, M.; Mancarella, P.; Trakas, D.N.; Kyriakides, E.; Hatziargyriou, N.D. Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems. IEEE Trans. Power Syst. 2017, 32, 4732–4742. [Google Scholar] [CrossRef] [Green Version]
- Panteli, M.; Mancarella, P. The Grid: Stronger, Bigger, Smarter? IEEE Power Energy Mag. 2015, 13, 58–66. [Google Scholar] [CrossRef]
- Jufri, F.H.; Widiputra, V.; Jung, J. State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies. Appl. Energy 2019, 239, 1049–1065. [Google Scholar] [CrossRef]
- Lu, J.; Guo, J.; Jian, Z.; Yang, Y.; Tang, W. Resilience assessment and its enhancement in tackling adverse impact of ice disasters for power transmission systems. Energies 2018, 11, 2272. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.; Luna, B.Q.; Rasmussen, R.; Bratcher, D.; Garre, L.; Chen, F.; Tewari, M.; Friis-Hansen, P. Stormy weather: Assessing climate change hazards to electric power infrastructure: A sandy case study. IEEE Power Energy Mag. 2014, 12, 66–75. [Google Scholar] [CrossRef]
- Abbey, C.; Cornforth, D.; Hatziargyriou, N.; Hirose, K.; Kwasinski, A.; Kyriakides, E.; Platt, G.; Reyes, L.; Suryanarayanan, S. Powering through the storm: Microgrids operation for more efficient disaster recovery. IEEE Power Energy Mag. 2014, 12, 67–76. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, A. A study on mitigation of blackout risks in smart grid. In Proceedings of the IICPE IEEE India International Conference on Power Electronics, Patiala, India, 17–19 November 2016; pp. 1–4. [Google Scholar]
- Warnier, M.; Dulman, S.; Koç, Y.; Pauwels, E. Distributed monitoring for the prevention of cascading failures in operational power grids. Int. J. Crit. Infrastruct. Prot. 2017, 17, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Wei, Y.; Poor, H.V. Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics. Proc. IEEE 2017, 105, 1354–1366. [Google Scholar] [CrossRef]
- Gao, H.; Chen, Y.; Mei, S.; Huang, S.; Xu, Y. Resilience-Oriented Pre-Hurricane Resource Allocation in Distribution Systems Considering Electric Buses. Proc. IEEE 2017, 105, 1214–1233. [Google Scholar] [CrossRef]
- Reilly, A.C.; Tonn, G.L.; Zhai, C.; Guikema, S.D. Hurricanes and Power System Reliability-The Effects of Individual Decisions and System-Level Hardening. Proc. IEEE 2017, 105, 1429–1442. [Google Scholar] [CrossRef]
- McClure, G.; Langlois, S.; Rogier, J. Understanding how overhead lines respond to localized high intensity wind storms. In Proceedings of the 2008 Structures Congress-Structures Congress 2008: Crossing the Borders, Vancouver, British, 24–26 April 2008; American Society of Civil Engineers: Reston, VA, USA, 2008; Volume 314, pp. 1–10. [Google Scholar]
- Panteli, M.; Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electr. Power Syst. Res. 2015, 127, 259–270. [Google Scholar] [CrossRef]
- Ward, D.M. The effect of weather on grid systems and the reliability of electricity supply. Clim. Chang. 2013, 121, 103–113. [Google Scholar] [CrossRef]
- Hines, P.; Apt, J.; Talukdar, S. Large blackouts in North America: Historical trends and policy implications. Energy Policy 2009, 37, 5249–5259. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Ton, D. Modernizing Distribution System Restoration to Achieve Grid Resiliency Against Extreme Weather Events: An Integrated Solution. Proc. IEEE 2017, 105, 1267–1288. [Google Scholar] [CrossRef]
- Araneda, J.C.; Rudnick, H.; Mocarquer, S.; Miquel, P. Lessons from the 2010 Chilean earthquake and its impact on electricity supply. In Proceedings of the IEEE 2010 Powercon International Conference on Power System Technology: Technological Innovations Making Power Grid Smarter, Hangzhou, China, 24–28 October 2010; pp. 1–7. [Google Scholar]
- Shinozuka, M.; Dong, X.; Chen, T.C.; Jin, X. Seismic performance of electric transmission network under component failures. Earthq. Eng. Struct. Dyn. 2007, 36, 227–244. [Google Scholar] [CrossRef]
- Nuti, C.; Rasulo, A.; Vanzi, I. Seismic safety evaluation of electric power supply at urban level. Earthq. Eng. Struct. Dyn. 2007, 36, 245–263. [Google Scholar] [CrossRef]
- Panteli, M.; Trakas, D.N.; Mancarella, P.; Hatziargyriou, N.D. Boosting the Power Grid Resilience to Extreme Weather Events Using Defensive Islanding. IEEE Trans. Smart Grid 2016, 7, 2913–2922. [Google Scholar] [CrossRef]
- Bie, Z.; Lin, Y.; Li, G.; Li, F. Battling the Extreme: A Study on the Power System Resilience. Proc. IEEE 2017, 105, 1253–1266. [Google Scholar] [CrossRef]
- Ferreira, E.F.; Barros, J.D. Faults Monitoring System in the Electric Power Grid of Medium Voltage. In Proceedings of the Procedia Computer Science, Porto, Portugal, 8–11 May 2018; Elsevier: Amsterdam, The Netherlands, 2018; Volume 130, pp. 696–703. [Google Scholar]
- Billinton, R.; Singh, G. Application of adverse and extreme adverse weather: Modelling in transmission and distribution system reliability evaluation. IEE Proc.-Gener. Transm. Distrib. 2006, 153, 115–120. [Google Scholar] [CrossRef]
- Mills, B.; Unrau, D.; Pentelow, L.; Spring, K. Assessment of lightning-related damage and disruption in Canada. Nat. Hazards 2010, 52, 481–499. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M.; Aminifar, F.; Alabdulwahab, A.; Al-Turki, Y. Networked Microgrids for Enhancing the Power System Resilience. Proc. IEEE 2017, 105, 1289–1310. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Wang, J.; Baldick, R. Research on Resilience of Power Systems under Natural Disasters-A Review. IEEE Trans. Power Syst. 2016, 31, 1604–1613. [Google Scholar] [CrossRef]
- Xie, Q.; Zhu, R. Earth, wind, and ice. IEEE Power Energy Mag. 2011, 9, 28–36. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.C.; Schneider, K.P.; Ton, D.T. Toward a resilient distribution system. In Proceedings of the IEEE Power and Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; Volume 2015, pp. 1–5. [Google Scholar]
- Li, W.; Zhang, X. Simulation of the smart grid communications: Challenges, techniques, and future trends. Comput. Electr. Eng. 2014, 40, 270–288. [Google Scholar] [CrossRef]
- Baldick, R.; Chowdhury, B.; Dobson, I.; Dong, Z.; Gou, B.; Hawkins, D.; Huang, H.; Joung, M.; Kirschen, D.; Li, F.; et al. Initial review of methods for cascading failure analysis in electric power transmission systems IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–8. [Google Scholar]
- Andersson, G.; Donalek, P.; Farmer, R.; Hatziargyriou, N.; Kamwa, I.; Kundur, P.; Martins, N.; Paserba, J.; Pourbeik, P.; Sanchez-Gasca, J.; et al. Causes of the 2003 major grid blackouts in North America Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 2005, 20, 1922–1928. [Google Scholar] [CrossRef]
- Kaitovic, I.; Lukovic, S.; Malek, M. Proactive failure management in smart grids for improved resilience: A methodology for failure prediction and mitigation. In Proceedings of the 2015 IEEE Globecom Workshops, GC Wkshps 2015-Proceedings, San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Vaiman, M.; Bell, K.; Chen, Y.; Chowdhury, B.; Dobson, I.; Hines, P.; Papic, M.; Miller, S.; Zhang, P. Risk assessment of cascading outages: Methodologies and challenges. IEEE Trans. Power Syst. 2012, 27, 631–641. [Google Scholar] [CrossRef]
- Colak, I.; Sagiroglu, S.; Fulli, G.; Yesilbudak, M.; Covrig, C.F. A survey on the critical issues in smart grid technologies. Renew. Sustain. Energy Rev. 2016, 54, 396–405. [Google Scholar] [CrossRef]
- Zad Tootaghaj, D.; Bartolini, N.; Khamfroush, H.; He, T.; Ray Chaudhuri, N.; La Porta, T. Mitigation and Recovery from Cascading Failures in Interdependent Networks under Uncertainty. IEEE Trans. Control Netw. Syst. 2018, 6, 501–514. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Z. Cyber security in the Smart Grid: Survey and challenges. Comput. Netw. 2013, 57, 1344–1371. [Google Scholar] [CrossRef]
- Pagani, G.A.; Aiello, M. The Power Grid as a complex network: A survey. Phys. A Stat. Mech. Appl. 2013, 392, 2688–2700. [Google Scholar] [CrossRef] [Green Version]
- Danzi, P.; Angjelichinoski, M.; Stefanović, Č.; Dragičević, T.; Popovski, P. Software-Defined Microgrid Control for Resilience Against Cyber Attacks. IEEE Trans. Smart Grid 2018, 10, 5258–5268. [Google Scholar] [CrossRef]
- Schuelke-Leech, B.A.; Barry, B.; Muratori, M.; Yurkovich, B.J. Big Data issues and opportunities for electric utilities. Renew. Sustain. Energy Rev. 2015, 52, 937–947. [Google Scholar] [CrossRef]
- Erol-Kantarci, M.; Mouftah, H. Smart grid forensic science: Applications, challenges, and open issues. IEEE Commun. Mag. 2013, 51, 68–74. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Y.; Li, S.; Liang, W.; Chen, C.L.P. Cyber security and privacy issues in smart grids. IEEE Commun. Surv. Tutor. 2012, 14, 981–997. [Google Scholar] [CrossRef]
- Manandhar, K.; Cao, X.; Hu, F.; Liu, Y. Detection of faults and attacks including false data injection attack in smart grid using Kalman filter. IEEE Trans. Control Netw. Syst. 2014, 1, 370–379. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, J.; Tang, Y.; Sun, Y.; He, H. Resilience analysis of power grids under the sequential attack. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2340–2354. [Google Scholar] [CrossRef]
- Kosut, O.; Jia, L.; Thomas, R.J.; Tong, L. Malicious data attacks on the smart grid. IEEE Trans. Smart Grid 2011, 2, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.A.; Shneiderman, B.; Milic-Frayling, N.; Mendes Rodrigues, E.; Barash, V.; Dunne, C.; Capone, T.; Perer, A.; Gleave, E. Analyzing (social media) networks with NodeXL. In Proceedings of the Fourth International Conference on Communities and Technologies-C&T ’09, State College, PA, USA, 25–27 June 2009; ACM Press: New York, NY, USA, 2009; p. 255. [Google Scholar]
- Himelboim, I.; Smith, M.A. NodeXL. In The International Encyclopedia of Communication Research Methods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–3. [Google Scholar]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 2014, 9, e98679. [Google Scholar] [CrossRef]
- Electric Institute, E. Before and After the Storm. 2014. Available online: http://www.eei.org/issuesandpolicy/electricreliability/mutualassistance/Documents/BeforeandAftertheStorm.pdf (accessed on 15 October 2019).
- Papic, M.; Bell, K.; Chen, Y.; Dobson, I.; Fonte, L.; Haq, E.; Hines, P.; Kirschen, D.; Luo, X.; Miller, S.S.; et al. Survey of tools for risk assessment of cascading outages. In Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–9. [Google Scholar]
- Shiwen, Y.; Hui, H.; Chengzhi, W.; Hao, G.; Hao, F. Review on Risk Assessment of Power System. In Proceedings of the Procedia Computer Science, Zurich, Switzerland, 12–14 June 2017; Elsevier: Amsterdam, The Netherlands, 2017; Volume 109, pp. 1200–1205. [Google Scholar]
- Davis, G.; Snyder, A.F.; Mader, J. The future of Distribution System Resiliency. In Proceedings of the IEEE PSC 2014 Clemson University Power Systems Conference, Clemson, SC, USA, 11–14 March 2014; pp. 1–8. [Google Scholar]
- McGranaghan, M.; Olearczyk, M.; Gellings, C. Enhancing distribution resiliency: Opportunities for applying innovative technologies. Electr. Power Res. Inst. 2013, 20. [Google Scholar]
- Brown, R.E. Storm Hardening the Distribution System. 2010. Available online: www.tdworld.com (accessed on 12 October 2019).
- Amin, M.; Schewe, P.F. Preventing blackouts. Sci. Am. 2007, 296, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Waterer, S. Enhance Power Equipment Reliability with Predictive Maintenance Technologies. 2012. Available online: https://www.se.com/us/en/download/document/1910DB1208/ (accessed on 11 November 2019).
- Poudineh, R.; Jamasb, T. Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement. Energy Policy 2014, 67, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Hinkel, P.; Henschel, D.; Zugck, M.; Wellssow, W.; Torabi, E.; Guo, Y.; Rossa-Weber, G.; Gawlik, W.; Traxler, E.; Fiedler, L.; et al. Control Center Interfaces and Tools for Power System Restoration. In Proceedings of the ETG Symposium International ETG-Congress, Esslingen, Germany, 8–9 May 2019; VDE: Frankfurt, Germany, 2019; pp. 1–6. [Google Scholar]
- Madureira, A.; Gouveia, C.; Moreira, C.; Seca, L.; Lopes, J.P. Coordinated management of distributed energy resources in electrical distribution systems. In Proceedings of the 2013 ISGT LA IEEE PES Conference on Innovative Smart Grid Technologies, Sao Paulo, Brazil, 15–17 April 2013; pp. 1–8. [Google Scholar]
- Prostejovsky, A.M.; Brosinsky, C.; Heussen, K.; Westermann, D.; Kreusel, J.; Marinelli, M. The future role of human operators in highly automated electric power systems. Electr. Power Syst. Res. 2019, 175, 105883. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Enhancing the Resilience of the Nation’s Electricity System; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Januario, F.; Carvalho, C.; Cardoso, A.; Gil, P. Security challenges in SCADA systems over Wireless Sensor and Actuator Networks. In Proceedings of the IEEE International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Lisbon, Portugal, 18–20 October 2016; Volume 2016, pp. 363–368. [Google Scholar]
- Giani, A.; Karsai, G.; Roosta, T.; Shah, A.; Sinopoli, B.; Wiley, J. A testbed for secure and robust SCADA systems. ACM SIGBED Rev. 2008, 5, 1–4. [Google Scholar] [CrossRef]
- Marzband, M.; Moghaddam, M.M.; Akorede, M.F.; Khomeyrani, G. Adaptive load shedding scheme for frequency stability enhancement in microgrids. Electr. Power Syst. Res. 2016, 140, 78–86. [Google Scholar] [CrossRef]
- Golari, M.; Fan, N.; Wang, J. Large-scale stochastic power grid islanding operations by line switching and controlled load shedding. Energy Syst. 2017, 8, 601–621. [Google Scholar] [CrossRef]
- Hare, J.; Shi, X.; Gupta, S.; Bazzi, A. A review of faults and fault diagnosis in micro-grids electrical energy infrastructure. In Proceedings of the 2014 ECCE IEEE Energy Conversion Congress and Exposition, Pittsburgh, PA, USA, 14–18 September 2014; pp. 3325–3332. [Google Scholar]
- Ferreira, E.F.; Barros, J.D. Faults Monitoring System in the Electric Power Grid with Scalability to Detect Natural/Environmental Catastrophes. Int. J. Therm. Environ. Eng. 2018, 16, 37–45. [Google Scholar] [CrossRef]
- Divya pradeepa, T. Fault Diagnosis on Distribution System Using PLC & SCADA. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 21393–21401. [Google Scholar]
- Leahy, K.; Gallagher, C.; O’Donovan, P.; Bruton, K.; O’Sullivan, D.T.J. A robust prescriptive framework and performance metric for diagnosing and predicting wind turbine faults based on SCADA and alarms data with case study. Energies 2018, 11, 1738. [Google Scholar] [CrossRef] [Green Version]
- Vidal, Y.; Pozo, F.; Tutivén, C. Wind turbine multi-fault detection and classification based on SCADA data. Energies 2018, 11, 3018. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, D.; Dong, A.; Kang, D.; Lv, Q.; Shang, L. Fault prediction and diagnosis of wind turbine generators using SCADA data. Energies 2017, 10, 1210. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.M.; Liu, C. Line-to-line fault analysis and location in a VSC-based low-voltage DC distribution network. Energies 2018, 11, 536. [Google Scholar]
- Baran, M.E.; Mahajan, N.R. Overcurrent Protection on Voltage-Source-Converter-Based Multiterminal DC Distribution Systems. IEEE Trans. Power Deliv. 2007, 22, 406–412. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, T.; Wang, M.; Zhao, H.; Wang, X. An improved directional relay adapted to a distribution network with IIG integration. Energies 2019, 12, 3345. [Google Scholar] [CrossRef] [Green Version]
- Hatziargyriou, N. Microgrids-Architectures and Control; Wiley: Hoboken, NJ, USA, 2013; ISBN 9781118720677. [Google Scholar]
- Khodaei, A. Resiliency-Oriented Microgrid Optimal Scheduling. IEEE Trans. Smart Grid 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Kelly-Pitou, K.M.; Ostroski, A.; Contino, B.; Grainger, B.; Kwasinski, A.; Reed, G. Microgrids and resilience: Using a systems approach to achieve climate adaptation and mitigation goals. Electr. J. 2017, 30, 23–31. [Google Scholar] [CrossRef]
- Peiravi, R.I.A. A fast Algortithm for intentional islanding of power systems using the multilevel Kernel k-means approach. J. Appl. Sci. 2009, 9, 2247–2255. [Google Scholar] [CrossRef]
- Brodzki, J.; Quirós-Tortós, J.; Bialek, J.; Sánchez-García, R.; Terzija, V. Constrained spectral clustering-based methodology for intentional controlled islanding of large-scale power systems. IET Gener. Transm. Distrib. 2015, 9, 31–42. [Google Scholar]
- Ding, L.; Gonzalez-Longatt, F.M.; Wall, P.; Terzija, V. Two-step spectral clustering controlled islanding algorithm. IEEE Trans. Power Syst. 2013, 28, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Zeineldin, H.; El-Saadany, E.F.; Salama, M.M.A. Intentional islanding of distributed generation. IEEE Power Eng. Soc. Gen. Meet. 2005, 2005, 1–7. [Google Scholar]
- Kim, M.S.; Haider, R.; Cho, G.J.; Kim, C.H.; Won, C.Y.; Chai, J.S. Comprehensive review of islanding detection methods for distributed generation systems. Energies 2019, 12, 837. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilian, A.; Kezunovic, M. Prevention of power grid blackouts using intentional islanding scheme. IEEE Trans. Ind. Appl. 2017, 53, 622–629. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, M.; Wu, H.; Zhu, L.; Che, H.; Liu, Z. A strategy for intentional islanding of distribution networks based on node electrical relevance and artificial bee colony algorithm. IEEJ Trans. Electr. Electron. Eng. 2017, 13, 2501. [Google Scholar] [CrossRef]
- Kezunovic, M. Smart Fault Location for Smart Grids. IEEE Trans. Smart Grid 2011, 2, 11–22. [Google Scholar] [CrossRef]
- Mohammadi, P.; El-Kishyky, H.; Abdel-Akher, M.; Abdel-Salam, M. The impacts of distributed generation on fault detection and voltage profile in power distribution networks. In Proceedings of the IPMHVC 2014 IEEE International Power Modulator and High Voltage Conference, Santa Fe, NM, USA, 1–5 June 2014; pp. 191–196. [Google Scholar]
- Ates, Y.; Boynuegri, A.R.; Uzunoglu, M.; Nadar, A.; Yumurtacı, R.; Erdinc, O.; Paterakis, N.G.; Catalão, J.P.S. Adaptive protection scheme for a distribution system considering grid-connected and islanded modes of operation. Energies 2016, 9, 378. [Google Scholar] [CrossRef]
- Norshahrani, M.; Mokhlis, H.; Abu Bakar, A.; Jamian, J.; Sukumar, S. Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems. Energies 2017, 10, 1864. [Google Scholar] [CrossRef] [Green Version]
- Caramia, P.; Di Mambro, E.; Varilone, P.; Verde, P. Impact of distributed generation on the voltage sag performance of transmission systems. Energies 2017, 10, 959. [Google Scholar] [CrossRef] [Green Version]
- Torrent-Fontbona, F.; López, B. Decision support for grid-connected renewable energy generators planning. Energy 2016, 115, 577–590. [Google Scholar] [CrossRef]
- Chang, L.; Wu, Z. Performance and reliability of electrical power grids under cascading failures. Int. J. Electr. Power Energy Syst. 2011, 33, 1410–1419. [Google Scholar] [CrossRef]
- Cadini, F.; Agliardi, G.L.; Zio, E. A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions. Appl. Energy 2017, 185, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework. Energy Build. 2012, 48, 220–232. [Google Scholar] [CrossRef] [Green Version]
Causes | Faults | Refs |
---|---|---|
Natural Causes |
| [2,4,8,9,19,38,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] |
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
Errors |
| [2,7,18,48,49,66,67,70,71,72,73,74,75] |
| ||
| ||
| ||
| ||
| ||
| ||
| ||
| ||
Attacks |
| [1,2,9,18,57,62,66,67,76,77,78,79,80,81,82,83,84,85] |
| ||
| ||
| ||
| ||
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mar, A.; Pereira, P.; F. Martins, J. A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience. Energies 2019, 12, 4667. https://doi.org/10.3390/en12244667
Mar A, Pereira P, F. Martins J. A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience. Energies. 2019; 12(24):4667. https://doi.org/10.3390/en12244667
Chicago/Turabian StyleMar, Adriana, Pedro Pereira, and João F. Martins. 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience" Energies 12, no. 24: 4667. https://doi.org/10.3390/en12244667
APA StyleMar, A., Pereira, P., & F. Martins, J. (2019). A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience. Energies, 12(24), 4667. https://doi.org/10.3390/en12244667