Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates
Abstract
:1. Introduction
2. Case Study
3. PaT Performance
3.1. Selection of PaT Operating at Rated Conditions in Turbine Mode
3.2. Characteristic Curves in Turbine Mode
3.3. MATLAB©–Simulink Model
4. Results and Comments
4.1. Case 1: Basic Flow-Rate Control Strategy
4.2. Case 2: Basic Flow-Rate and Speed Control
4.3. Case 3: Advanced Speed and Flow Control
4.4. Case 4: Basic Flow-Rate and Speed Control with Reduced WDN Pressure to Bar
5. Energy and Economic Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nassar, I.A.; Hossam, K.; Abdella, M.M. Economic and environmental benefits of increasing the renewable energy sources in the power system. Energy Rep. 2019, 5, 1082–1088. [Google Scholar] [CrossRef]
- Silva, M.; Leal, V.; Oliveira, V.; Horta, I.M. A scenario-based approach for assessing the energy performance of urban development pathways. Sustain. Cities Soc. 2018, 40, 372–382. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Rahman, K.U. Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale. Appl. Energy 2017, 188, 378–391. [Google Scholar] [CrossRef]
- Yuksel, I. Water management for sustainable and clean energy in Turkey. Energy Rep. 2015, 1, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Punys, P.; Dumbrauskas, A.; Kvaraciejus, A.; Vyciene, G. Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications. Energies 2011, 4, 1258–1277. [Google Scholar] [CrossRef] [Green Version]
- Patsialis, T.; Kougias, I.; Kazakis, N.; Theodossiou, N.; Droege, P. Supporting Renewables’ Penetration in Remote Areas through the Transformation of Non-Powered Dams. Energies 2016, 9, 1054. [Google Scholar] [CrossRef] [Green Version]
- Korkovelos, A.; Mentis, D.; Siyal, S.H.; Arderne, C.; Rogner, H.; Bazilian, M.; Howells, M.; Beck, H.; de Roo, A. A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [Google Scholar] [CrossRef] [Green Version]
- Renzi, M.; Rudolf, P.; ¸Stefan, D.; Nigro, A.; Rossi, M. Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study. Appl. Energy 2019, 250, 665–676. [Google Scholar] [CrossRef]
- Rossi, M.; Nigro, A.; Pisaturo, G.R.; Renzi, M. Technical and economic analysis of Pumps-as-Turbines (PaTs) used in an Italian Water Distribution Network (WDN) for electrical energy production. Energy Procedia 2019, 158, 117–122. [Google Scholar] [CrossRef]
- Samir, N.; Kansoh, R.; Elbarki, W.; Fleifle, A. Pressure control for minimizing leakage in water distribution systems. Alex. Eng. J. 2017, 56, 601–612. [Google Scholar] [CrossRef]
- van Zyl, J.E.; Clayton, C. The effect of pressure on leakage in water distribution systems. Water Manag. 2007, 160, 109–114. [Google Scholar] [CrossRef]
- Righetti, M.; Bort, C.; Bottazzi, M.; Menapace, A.; Zanfei, A. Optimal selection and monitoring of nodes aimed at supporting leakages identification in WDS. Water 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Saldarriaga, J.; Salcedo, C.A. Determination of Optimal Location and Settings of Pressure Reducing Valves in Water Distribution Networks for Minimizing Water Losses. Procedia Eng. 2015, 119, 973–983. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.; Abraham, E.; Parpas, P.; Stoianov, I. Optimized Control of Pressure Reducing Valves in Water Distribution Networks with Dynamic Topology. Procedia Eng. 2015, 119, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.S.; Derakhshan, S.; Kong, F.Y. Theoretical, numerical and experimental prediction of pump as turbine performance. Renew. Energy 2012, 48, 507–513. [Google Scholar] [CrossRef]
- Polák, M. The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode. Energies 2019, 12, 2103. [Google Scholar] [CrossRef] [Green Version]
- Binama, M.; Su, W.T.; Li, X.B.; Li, F.C.; Wei, X.Z.; An, S. Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review. Renew. Sustain. Energy Rev. 2017, 79, 148–179. [Google Scholar] [CrossRef]
- Arpe, J.; Prénant, J.; Dubas, M.; Biner, H.-P. Project Charactéristiques Des Pompes Fonctionnant en Turbines; Rapport Final du Project N° 100400/150 497; Ecole d’ingénieurs de Genève, Haute école valaisanne: Genève, Switzerland, 2006; p. 45. [Google Scholar]
- Rossi, M.; Renzi, M. A general methodology for performance prediction of pump-as-turbines using Artificial Neural Networks. Renew. Energy 2018, 128, 265–274. [Google Scholar] [CrossRef]
- Venturini, M.; Manservigi, L.; Alvisi, S.; Simani, S. Development of a physics-based model to predict the performance of pumps as turbines. Appl. Energy 2018, 231, 343–354. [Google Scholar] [CrossRef]
- Rossi, M.; Nigro, A.; Renzi, M. Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions. Appl. Energy 2019, 248, 555–566. [Google Scholar] [CrossRef]
- Frosina, E.; Buono, D.; Senatore, A. A Performance Prediction Method for Pumps as Turbines (PAT) Using a Computational Fluid Dynamics (CFD) Modeling Approach. Energies 2017, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Carravetta, A.; Derakhshan, S.; Ramos, H.M. Pumps as Turbines; Springer Tracts in Mechanical Engineering; Springer: Berlin, Germany, 2018; p. 236. [Google Scholar]
- Wang, T.; Wang, C.; Kong, F.; Gou, Q.; Yang, S. Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine. Energy 2017, 130, 473–485. [Google Scholar] [CrossRef]
- Carravetta, A.; del Giudice, G.; Fecarotta, O.; Ramos, H.M. PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies 2013, 6, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yang, H.; Shen, Z.; Chen, J. Micro hydro power generation from water supply system in high rise buildings using pump as turbines. Energy 2017, 137, 431–440. [Google Scholar] [CrossRef]
- Lydon, T.; Coughlan, P.; McNabola, A. Pressure management and energy recovery in water distribution network: Development of design and selection methodologies using three pump-as-turbine case studies. Energy Procedia 2017, 114, 1038–1050. [Google Scholar] [CrossRef]
- Lima, G.M.; Luvizotto, E.; Brentan, B.M. Selection and location of Pumps as Turbines substituting pressure reducing valves. Renew. Energy 2017, 109, 392–405. [Google Scholar] [CrossRef]
- Lima, G.M.; Brentan, B.M.; Luvizotto, E. Optimal design of water supply networks using an energy recovery approach. Renew. Energy 2018, 117, 404–413. [Google Scholar] [CrossRef]
- Kramer, M.; Terheiden, K.; Wieprecht, S. Pumps as turbines for efficient energy recovery in water supply networks. Renew. Energy 2018, 122, 17–25. [Google Scholar] [CrossRef] [Green Version]
- de Marchis, M.; Milici, B.; Volpe, R.; Messineo, A. Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis. Energies 2016, 9, 877. [Google Scholar] [CrossRef] [Green Version]
- Carravetta, A.; Fecarotta, O.; del Giudice, G.; Ramos, H. Energy recovery in water systems by PATs: A comparisons among the different installation schemes. Procedia Eng. 2014, 70, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.; Ferreira, J.P.; Covas, D.I.C.; Avellan, F. Variable speed operation of centrifugal pumps running as turbines. Experimental investigation. Renew. Energy 2019, 142, 437–450. [Google Scholar] [CrossRef]
- Mercier, T.; Hardy, C.; Tichelen, P.V.; Olivier, M.; de Jaeger, E. Control of variable-speed pumps used as turbines for flexible grid-connected power generation. Electr. Power Syst. Res. 2019, 176, 105962. [Google Scholar] [CrossRef]
- Alberizzi, J.C.; Renzi, M.; Nigro, A.; Rossi, M. Study of a Pump as Turbine (PaT) speed control for a Water Distribution Network (WDN) in South-Tyrol subjected to high variable water flow rates. Energy Procedia 2018, 148, 226–233. [Google Scholar] [CrossRef]
- Renzi, M.; Rossi, M. A generalized theoretical methodology to forecast flow coefficient, head coefficient and efficiency of Pumps-as-Turbines (PaTs). Energy Procedia 2019, 158, 129–134. [Google Scholar] [CrossRef]
- SEAB, Servizi Energia Ambiente Bolzano. Available online: https://www.seab.bz.it/it/privati/lacqua-di-bolzano (accessed on 3 December 2019).
- Singh, P.; Nestmann, F. An optimization routine on a prediction and selection model for the turbine operation of centrifugal pumps. Exp. Therm. Fluid Sci. 2010, 34, 152–164. [Google Scholar] [CrossRef]
- SNPA, XII Rapporto Qualità Dell’Ambiente Urbano—Edizione 2016. Available online: http://www.isprambiente.gov.it/it/pubblicazioni/stato-dellambiente/xii-rapporto-qualita-dell2019ambiente-urbano-edizione-2016 (accessed on 3 December 2019).
- AEEG, Relazione Annuale Sullo Stato Dei Servizi E Sull’Attività Svolta. Available online: https://www.arera.it/it/dati/eepcfr2.htm (accessed on 3 December 2019).
- Luo, J.; Wang, J.; Fang, Z.; Shao, J.; Li, J. Optimal design of a high efficiency LLC resonant converter with a narrow frequency range for voltage regulation. Energies 2018, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
Hour | 6:00 | 7:00 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 | 19:00 | 20:30 |
14.67 | 19.57 | 16.40 | 14.94 | 13.24 | 11.17 | 13.56 | 13.56 | 12.18 | 10.24 | 12.10 | 11.51 | 18.58 | 19.34 | 14.25 |
Pump Mode | Turbine Mode | |
---|---|---|
Flow rate (m3/h) | 13 | |
Head (m) | 20 | |
Mechanical efficiency (-) | ||
Rotational speed (rpm) | 2900 | 2900 |
Specific speed (rad/s) | ||
Impeller diameter (m) |
BEP Flow Rate Offset (%) | Flow Rate (m3/h) | (-) | Head (m) | (-) | Mechanical Efficiency (-) | Mechanical Power (KW) |
---|---|---|---|---|---|---|
14.35 | ||||||
Operating Strategy | Pressure Constraint (Bar) | |
---|---|---|
Case 1 | Flow-rate control | 4 |
Case 2 | Flow-rate and | 4 |
speed control | ||
Case 3 | Speed control | 4 |
Case 4 | Flow-rate and | 3.5 |
speed control |
Energy Recovery | Economic Saving | % with Respect | Not Recovered | % of Recovered | |
---|---|---|---|---|---|
to Case 1 | Energy | ||||
Case 1 | 4637 | 979 | - | 7833 | 37 |
Case 2 | 4706 | 994 | 1.5 | 7764 | 38 |
Case 3 | 5699 | 1204 | 23 | 6771 | 46 |
Case 4 | 6307 | 1332 | 36 | 6163 | 51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberizzi, J.C.; Renzi, M.; Righetti, M.; Pisaturo, G.R.; Rossi, M. Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates. Energies 2019, 12, 4738. https://doi.org/10.3390/en12244738
Alberizzi JC, Renzi M, Righetti M, Pisaturo GR, Rossi M. Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates. Energies. 2019; 12(24):4738. https://doi.org/10.3390/en12244738
Chicago/Turabian StyleAlberizzi, Jacopo Carlo, Massimiliano Renzi, Maurizio Righetti, Giuseppe Roberto Pisaturo, and Mosè Rossi. 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates" Energies 12, no. 24: 4738. https://doi.org/10.3390/en12244738
APA StyleAlberizzi, J. C., Renzi, M., Righetti, M., Pisaturo, G. R., & Rossi, M. (2019). Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates. Energies, 12(24), 4738. https://doi.org/10.3390/en12244738