Impact of Local Effects on the Evolution of Unconventional Rock Permeability
Abstract
:1. Introduction
2. Conceptual Model
3. Governing Equations
- Shale is a homogeneous, isotropic, dual poroelastic continuum.
- Strains are much smaller than the length scale.
- Gas contained within the pores is ideal, and its viscosity is constant under isothermal conditions.
- Gas flow through the shale fracture is defined by Darcy’s law and defined by Knudsen diffusion in the matrix.
3.1. Formulation of Solid Deformation
3.2. Formulation of Gas Flow in the Fracture
3.3. Formulation of Gas Flow in the Matrix
3.4. Formulation of Cross-Couplings
4. Evolution of Shale Permeability under Stress-Controlled Conditions
4.1. Impact of Local Strain on Permeability
4.2. Impact of Modulus Ratios on Permeability
4.3. Impact of Pore Pressure on Permeability
4.4. Impact of Klinkenberg Effects on Permeability
4.5. Model Evaluation and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Cao, P.; Liu, J.; Leong, Y.K. A fully coupled multiscale shale deformation-gas transport model for the evaluation of shale gas extraction. Fuel 2016, 178, 103–117. [Google Scholar] [CrossRef]
- Amann-Hildenbrand, A.; Ghanizadeh, A.; Krooss, B.M. Transport properties of unconventional gas systems. Mar. Pet. Geol. 2012, 31, 90–99. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Ross, D.J.K.; Bustin, R.M. Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada. Int. J. Coal Geol. 2012, 103, 120–131. [Google Scholar] [CrossRef]
- Bustin, A.M.M.; Bustin, R.M. Importance of rock properties on the producibility of gas shales. Int. J. Coal Geol. 2012, 103, 132–147. [Google Scholar] [CrossRef]
- Swami, V.; Settari, A. A Pore Scale Gas Flow Model for Shale Gas Reservoir. In Proceedings of the SPE Americas Unconventional Resources Conference, Pittsburgh, PA, USA, 5–7 June 2012. [Google Scholar]
- Ghanizadeh, A.; Gasparik, M.; Amann-Hildenbrand, A.; Gensterblum, Y.; Krooss, B.M. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: I. Scandinavian Alum Shale. Mar. Pet. Geol. 2014, 51, 79–99. [Google Scholar] [CrossRef]
- Moghaddam, R.N.; Aghabozorgi, S.; Foroozesh, J. Numerical Simulation of Gas Production from Tight, Ultratight and Shale Gas Reservoirs: Flow Regimes and Geomechanical Effects. In Proceedings of the EUROPEC 2015, Society of Petroleum Engineers, Madrid, Spain, 1–4 June 2015. [Google Scholar]
- Warren, J.E.; Root, P.J. The Behavior of Naturally Fractured Reservoirs. Soc. Pet. Eng. J. 1963, 3, 245–255. [Google Scholar] [CrossRef]
- Li, N.; Ran, Q.; Li, J.; Yuan, J.; Wang, C.; Wu, Y.S. A multiple-continuum model for simulation of gas production from shale gas reservoirs. In Proceedings of the SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE, 16–18 September 2013. [Google Scholar]
- Yao, J.; Sun, H.; Fan, D.Y.; Wang, C.C.; Sun, Z.X. Numerical simulation of gas transport mechanisms in tight shale gas reservoirs. Pet. Sci. 2013, 10, 528–537. [Google Scholar] [CrossRef]
- Sun, H.; Chawathe, A.; Hoteit, H.; Shi, X.; Li, L. Understanding shale gas production mechanisms through reservoir simulation. In Proceedings of the SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna, Austria, 25–27 February 2017. [Google Scholar]
- Cao, P.; Liu, J.; Leong, Y.K. Combined impact of flow regimes and effective stress on the evolution of shale apparent permeability. J. Unconv. Oil Gas Resour. 2016, 14, 32–43. [Google Scholar] [CrossRef]
- Moghaddam, R.N.; Jamiolahmady, M. Fluid transport in shale gas reservoirs: Simultaneous effects of stress and slippage on matrix permeability. Int. J. Coal Geol. 2016, 163, 87–99. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Elsworth, D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int. J. Rock Mech. Min. Sci. 2008, 45, 1226–1236. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D. A theoretical model for gas adsorption-induced coal swelling. Int. J. Coal Geol. 2007, 69, 243–252. [Google Scholar] [CrossRef]
- Masoudian, M.S.; El-Zein, A.; Airey, D.W. Modelling stress and strain in coal seams during CO2 injection incorporating the rock–fluid interactions. Comput. Geotech. 2016, 76, 51–60. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Wei, M.; Elsworth, D. Coal permeability maps under the influence of multiple coupled processes. Int. J. Coal Geol. 2018, 187, 71–82. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Z.; Ye, Z. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel 2015, 139, 383–392. [Google Scholar] [CrossRef]
- Masoudian, M.S.; Hashemi, M.A.; Tasalloti, A.; Marshall, A.M. Elastic–Brittle–Plastic Behaviour of Shale Reservoirs and Its Implications on Fracture Permeability Variation: An Analytical Approach. Rock Mech. Rock Eng. 2018, 51, 1565–1582. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Liu, J.; Pan, Z.; Connell, L.D.; Chen, Z.; Qu, H. Impact of coal matrix strains on the evolution of permeability. Fuel 2016, 189, 270–283. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, Z.; Wang, S.; Elsworth, D.; Jiang, Y. Impact of transition from local swelling to macro swelling on the evolution of coal permeability. Int. J. Coal Geol. 2011, 88, 31–40. [Google Scholar] [CrossRef]
- Detournay, E.; Cheng, A.H.-D. Fundamentals of poroelasticity. In Comprehensive Rock Engineering: Principles, Practice and Projects; Fairhurst, C., Ed.; Pergamon Press: Oxford, UK, 1993; Volume 2, Chapter 5; pp. 113–171. [Google Scholar]
- Ranjbar, E.; Hassanzadeh, H. Matrix–fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media. Adv. Water Resour. 2011, 34, 627–639. [Google Scholar] [CrossRef]
- Hudson, J.A.; Fairhurst, C. Comprehensive Rock Engineering: Principles, Practice, and Projects, Vol. II. Analysis and Design Method; Pergamon Press: Oxford, UK, 1993; pp. 113–121. [Google Scholar]
- Liu, J.; Chen, Z.; Elsworth, D.; Qu, H.; Chen, D. Interactions of multiple processes during CBM extraction: A critical review. Int. J. Coal Geol. 2011, 87, 175–189. [Google Scholar] [CrossRef]
- Beskok, A.; Karniadakis, G.E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 1999, 3, 43–77. [Google Scholar]
- Civan, F.; Rai, C.S.; Sondergeld, C.H. Shale-Gas Permeability and Diffusivity Inferred by Improved Formulation of Relevant Retention and Transport Mechanisms. Transp. Porous Media 2011, 86, 925–944. [Google Scholar] [CrossRef]
- Wei, M.; Liu, J.; Feng, X.; Wang, C.; Zhou, F. Evolution of shale apparent permeability from stress-controlled to displacement-controlled conditions. J. Nat. Gas Sci. Eng. 2016, 34, 1453–1460. [Google Scholar] [CrossRef]
- Sakurovs, R.; Day, S.; Weir, S. Causes and consequences of errors in determining sorption capacity of coals for carbon dioxide at high pressure. Int. J. Coal Geol. 2009, 77, 16–22. [Google Scholar] [CrossRef]
- Wei, M.; Liu, J.; Elsworth, D.; Li, S.; Zhou, F. Influence of gas adsorption induced non-uniform deformation on the evolution of coal permeability. Int. J. Rock Mech. Min. Sci. 2019, 114, 71–78. [Google Scholar] [CrossRef]
- Letham, E.A. Matrix Permeability Measurements of Gas Shales: Gas Slippage and Adsorption as Sources of Systematic Error. Bachelor’s Thesis, The University of British Columbia, Kelowna, Canada, March 2011. [Google Scholar]
- Wang, S.; Elsworth, D.; Liu, J. Permeability evolution in fractured coal: The roles of fracture geometry and water-content. Int. J. Coal Geol. 2011, 87, 13–25. [Google Scholar] [CrossRef]
- Wang, J.G.; Liu, J.; Kabir, A. Combined effects of directional compaction, non-Darcy flow and anisotropic swelling on coal seam gas extraction. Int. J. Coal Geol. 2013, 109, 1–14. [Google Scholar] [CrossRef]
Parameter | Value | Physical Meaning | Units |
---|---|---|---|
Em | 10 | Young’s modulus of the matrix | GPa |
Ef | 2 | Young’s modulus of the fracture | GPa |
vm | 0.35 | Poisson’s ratio of the matrix | - |
vf | 0.2 | Poisson’s ratio of the fracture | - |
α | 0.8 | Biot coefficient of the fracture | - |
β | 0.4 | Biot coefficient of the matrix | - |
μ | 1.11×10−5 | Viscosity of Methane | Pa·s |
φm0 | 0.08 | Initial matrix porosity | - |
φf0 | 0.04 | Initial fracture porosity | - |
km0 | 0.5×10−20 | Initial matrix permeability | m² |
kf0 | 1×10−19 | Initial fracture permeability | m² |
PL | 6.109 | Langmuir pressure constant | MPa |
εL | 0.02 | Langmuir volumetric strain constant | - |
m | 1250 | Matrix density | kg/m³ |
f | 1000 | Fracture density | kg/m³ |
Pa | 0.1 | Atmosphere pressure | MPa |
g | 0.178 | Density of gas at standard condition | kg/m³ |
M | 0.016 | Molar mass of methane | kg/mol |
R | 8.314 | Gas constant | J/(mol·K) |
T | 298.15 | Temperature of the reservoir | K |
Symbol | Value | Physical Meanings | Units |
---|---|---|---|
KB | 1.38 × 10−23 | Boltzmann constant | J/K |
T | 298.15 | Temperature | K |
τh | 1 | Tortuosity of the matrix | - |
A | 0.178 | First constant for ζ | - |
B | 0.4348 | Second constant for ζ | - |
ζ0 | 0.25 | Asymptotic upper limit of ζ | - |
Sample | Mechanical Properties | |||
---|---|---|---|---|
Em (GPa) | Ef (GPa) | |||
Green River Shale | 8 | 6 | 0.25 | 0.25 |
Gas | PL (MPa) | (kg/m3) | ||
---|---|---|---|---|
He | - | - | 18.9 | 1.293 |
CO2 | 0.0353 | 3.82 | 14.932 | 1.784 |
CH4 | 0.0093 | 6.1 | 11.067 | 0.648 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, X.; Zhang, S.; Zhang, Y.; Hao, X.; Liu, J. Impact of Local Effects on the Evolution of Unconventional Rock Permeability. Energies 2019, 12, 478. https://doi.org/10.3390/en12030478
Ma X, Li X, Zhang S, Zhang Y, Hao X, Liu J. Impact of Local Effects on the Evolution of Unconventional Rock Permeability. Energies. 2019; 12(3):478. https://doi.org/10.3390/en12030478
Chicago/Turabian StyleMa, Xinxing, Xianwen Li, Shouwen Zhang, Yanming Zhang, Xiangie Hao, and Jishan Liu. 2019. "Impact of Local Effects on the Evolution of Unconventional Rock Permeability" Energies 12, no. 3: 478. https://doi.org/10.3390/en12030478
APA StyleMa, X., Li, X., Zhang, S., Zhang, Y., Hao, X., & Liu, J. (2019). Impact of Local Effects on the Evolution of Unconventional Rock Permeability. Energies, 12(3), 478. https://doi.org/10.3390/en12030478