Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate
Abstract
:1. Introduction
Methodology and Outline
2. The ISO14N Space Heating Model
2.1. Geometrical and Thermal Properties
2.2. Hydronic Heating System
2.3. Ventilation
2.4. Infiltration
2.5. Radiant Heat Gains Exterior Surfaces
2.6. Radiant Heat Gains Interior Surfaces
2.7. Operative Temperature
3. Pre-Processing of Boundary Conditions Data
3.1. Convective Heat Transfer Coefficients for Weather-Exposed Exterior Surfaces
3.2. Infiltration Potential
3.3. Solar Heat Gains
3.4. Shading Reduction Factor
3.5. Window Blinds
4. Data Input
4.1. Solar Irradiance
4.2. Meteorological Reanalysis Data
4.3. Example Building Model Data Input
4.3.1. ISO14N
4.3.2. IDA ICE
- Roof: 0.20 m insulation + 0.15 m concrete, U-value of 0.20 ;
- External walls: 0.20 m aerated concrete, U-value of 0.72 ;
- Glazing: 2-pane, U-value of 2.9 , g-value of 0.76;
- Ground floor: 0.1 m virtual ground layer + 0.5 m soil + 0.1 m insulation + 0.1 m concrete, U-value of 0.22 (0.33 if not including the ground);
- Internal walls: 150 of 0.15 m thick aerated concrete;
- Furniture: 130 of 0.01 m thick default furniture material.
5. Results
5.1. Full-Year Simulation Comparison with IDA ICE
5.2. Node Temperature Profiles of External Wall Elements
5.3. Operative Temperature
5.4. Air Infiltration
5.5. Sky Temperature and Thermal Radiation to the Sky
5.6. Exterior Surface Convective Heat Transfer Coefficients
5.7. Shading Reduction Factor
5.8. Window Blinds
5.9. Computation Benchmark
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
solar absorption [-] or solar altitude [] | |
efficiency [-] | |
azimuth angle [] | |
time interval [] | |
areal heat capacity | |
heat capacity of air per volume [ | |
normalized thermal power [] | |
density of air [] | |
Stefan-Boltzmann constant, 5.67e-8 [] | |
centigrade temperature [] | |
, , | square matrix of system coefficients, vector of unknown node temperatures, vector of known terms |
C | coefficient [-] or normalized heat capacity |
Data | |
distance, height, length [] | |
factor/fraction [-] | |
H | normalized heat transfer coefficient [] |
modified building’s ceiling height [] | |
I | solar or thermal radiation [] |
Q | specific air flow rate [] |
potential specific air flow rate [] | |
R | normalized thermal resistance [/W] |
U | thermal transmittance [] |
, | local wind speed [], meteorological wind speed at 10 m height [] |
g | total solar energy transmittance [-] |
h | surface coefficient of heat transfer [] |
n | exponent |
r | ratio [-] |
u | control signal [-] |
b | building |
(window) blinds | |
boundary | |
convective, convective interior surface | |
d | design (nominal) |
diffuse, direct | |
e | external (as in outdoor) |
(building) element | |
environment | |
external walls | |
ground floor | |
glazing (windows, doors etc) | |
ground | |
horizontal | |
hydronic heating system | |
internal mass (internal walls, intermediate floors and adiabatic external walls) | |
infiltration (uncontrolled air leakage) | |
internal (as in indoor) | |
radiator logarithmic mean temperature difference | |
m | mass related conductance or capacitance |
maximum | |
obstacle, overhang | |
proportional band | |
radiative, radiative interior surface | |
return | |
roof | |
s | stack |
, | surface exterior, surface interior |
set-point | |
shading or sheltering | |
sky temperature or sky thermal radiation | |
solar radiation/heat gain | |
surface thermal radiation downwards | |
supply | |
system | |
time index | |
thermal bridges | |
total | |
thermostatic radiator valve(s) | |
ventilation | |
vertical | |
virtual ground layer | |
w | wind |
weighted moving average |
Appendix A. Construct of the Linear Equations System
Exterior Surface Nodes | Inside Nodes | Interior Surface Nodes | |
---|---|---|---|
Internal air node: | |||
Exterior Surface Nodes | Inside Nodes | Interior Surface Nodes | |
---|---|---|---|
Internal air node: | |||
Appendix B. Full-Year Comparison
Month | IDA ICE, | ISO14N, | Deviation, | Deviation, % |
---|---|---|---|---|
1 | 24.8 | 23.9 | 0.9 | 3.6% |
2 | 17.9 | 17.2 | 0.7 | 4.1% |
3 | 15.4 | 14.7 | 0.7 | 4.5% |
4 | 10.0 | 9.3 | 0.7 | 6.9% |
5 | 3.0 | 2.9 | 0.1 | 4.3% |
6 | 0.1 | 0.1 | 0.0 | - |
7 | 0.0 | 0.0 | 0.0 | - |
8 | 0.3 | 0.4 | -0.1 | - |
9 | 1.5 | 1.5 | 0.0 | 0.8% |
10 | 10.7 | 10.4 | 0.3 | 3.0% |
11 | 16.7 | 16.2 | 0.5 | 3.1% |
12 | 17.8 | 17.2 | 0.5 | 2.9% |
Sum | 118.3 | 114.0 | 4.4 | 3.7% |
References
- Coakley, D.; Raftery, P.; Keane, M. A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 2014, 37, 123–141. [Google Scholar] [CrossRef]
- Ciancio, V.; Falasca, S.; Golasi, I.; Curci, G.; Coppi, M.; Salata, F. Influence of Input Climatic Data on Simulations of Annual Energy Needs of a Building: EnergyPlus and WRF Modeling for a Case Study in Rome (Italy). Energies 2018, 11, 2835. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Handbook—Fundamentals (SI Edition); ASHRAE: Atlanta, GA, USA, 2017. [Google Scholar]
- EnergyPlus. EnergyPlus 8.9 Documentation—Engineering Reference; Technical Report; U.S. Department of Energy: Washington, DC, USA, 2018.
- Kang, Y.; Krarti, M. Bayesian-Emulator based parameter identification for calibrating energy models for existing buildings. Build. Simul. 2016, 9, 411–428. [Google Scholar] [CrossRef]
- Tian, W.; Yang, S.; Li, Z.; Wei, S.; Pan, W.; Liu, Y. Identifying informative energy data in Bayesian calibration of building energy models. Energy Build. 2016, 119, 363–376. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Bacher, P.; Madsen, H. Identifying suitable models for the heat dynamics of buildings. Energy Build. 2011, 43, 1511–1522. [Google Scholar] [CrossRef] [Green Version]
- Boodi, A.; Beddiar, K.; Benamour, M.; Amirat, Y.; Benbouzid, M. Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations. Energies 2018, 11, 2604. [Google Scholar] [CrossRef]
- ISO. ISO 52016-1:2017—Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures (ISO 52016-1:2017); ISO: Geneva, Switzerland, 2017. [Google Scholar]
- ISO. ISO 13790:2008—Energy Performance of Buildings—Calculation of Energy Use For Space Heating and Cooling (ISO 13790:2008); ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Pavlak, G.S.; Florita, A.R.; Henze, G.P.; Rajagopalan, B. Comparison of Traditional and Bayesian Calibration Techniques for Gray-Box Modeling. J. Archit. Eng. 2014, 20, 04013011. [Google Scholar] [CrossRef]
- Piotr, M. The simple hourly method of EN ISO 13790 standard in Matlab/Simulink: A comparative study for the climatic conditions of Poland. Energy 2014, 75, 568–578. [Google Scholar]
- Fischer, D.; Wolf, T.; Scherer, J.; Wille-Haussmann, B. A stochastic bottom-up model for space heating and domestic hot water load profiles for German households. Energy Build. 2016, 124, 120–128. [Google Scholar] [CrossRef]
- Vivian, J.; Zarrella, A.; Emmi, G.; De Carli, M. An evaluation of the suitability of lumped-capacitance models in calculating energy needs and thermal behaviour of buildings. Energy Build. 2017, 150, 447–465. [Google Scholar] [CrossRef]
- Wang, R. 3D building modeling using images and LiDAR: A review. Int. J. Image Data Fusion 2013, 4, 273–292. [Google Scholar] [CrossRef]
- Lingfors, D.; Bright, J.; Engerer, N.; Ahlberg, J.; Killinger, S.; Widén, J. Comparing the capability of low- and high-resolution LiDAR data with application to solar resource assessment, roof type classification and shading analysis. Appl. Energy 2017, 205, 1216–1230. [Google Scholar] [CrossRef]
- Gadd, H.; Werner, S. Fault detection in district heating substations. Applied Energy 2015. [Google Scholar] [CrossRef]
- Werner, S. District heating and cooling in Sweden. Energy 2017, 126, 419–429. [Google Scholar] [CrossRef]
- Energy in the Buildings—Technical Properties and Calculations—Results from Project BETSI; Technical Report; Swedish National Board of Housing, Building and Planning (Boverket): Stockholm, Sweden, 2010.
- Olsson, D. Modellbaserad Styrning av Värmesystem Baserat på Prognostiserat väder Modellbaserad Styrning av Värmesystem Baserat på Prognostiserat Väder. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2014. [Google Scholar]
- Jangsten, M.; Kensby, J.; Dalenbäck, J.O.; Trüschel, A. Survey of radiator temperatures in buildings supplied by district heating. Energy 2017, 137, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, B.; Gelman, A.; Hoffman, M.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation; R Package Version 0.7.8. 2018. Available online: https://libraries.io/cran/dplyr (accessed on 2 February 2019).
- ISO. ISO 52010:2017—Energy Performance of Buildings—External Climatic Conditions—Part 1: Conversion of Climatic Data for Energy Calculations (EN ISO 52010:2017); ISO: Geneva, Switzerland, 2017. [Google Scholar]
- ISO. ISO 13370:2017—Thermal Performance of Buildings—Heat Transfer via the Ground—Calculation Methods (ISO 13370:2017); ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Walker, I.S.; Wilson, D.J. Field Validation of Algebraic Equations for Stack and Wind Driven Air Infiltration Calculations. HVAC&R Res. 1998, 4, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Beausoleil-Morrison, I.; Reardon, J. Evaluation of the Alberta air infiltration model using measurements and inter-model comparisons. Build. Environ. 2009, 44, 309–318. [Google Scholar] [CrossRef]
- Hayati, A.; Mattsson, M.; Sandberg, M. Evaluation of the LBL and AIM-2 air infiltration models on large single zones: Three historical churches. Build. Environ. 2014, 81, 365–379. [Google Scholar] [CrossRef]
- Jokisalo, J.; Kurnitski, J.; Korpi, M.; Kalamees, T.; Vinha, J. Building leakage, infiltration, and energy performance analyses for Finnish detached houses. Build. Environ. 2009, 44, 377–387. [Google Scholar] [CrossRef]
- Mirsadeghi, M.; Cóstola, D.; Blocken, B.; Hensen, J.L.M. Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty. Appl. Therm. Eng. 2013, 56, 134–151. [Google Scholar] [CrossRef]
- Liu, J.; Heidarinejad, M.; Gracik, S.; Srebric, J. The impact of exterior surface convective heat transfer coefficients on the building energy consumption in urban neighborhoods with different plan area densities. Energy Build. 2015, 86, 449–463. [Google Scholar] [CrossRef]
- Van Den Wymelenberg, K. Patterns of occupant interaction with window blinds: A literature review. Energy Build. 2012. [Google Scholar] [CrossRef]
- Sandberg, E.; Engvall, K. Delrapport 3 (MEBY): Beprövad Enkät-Hjälpmedel för Energiuppföljning; Technical Report; MEBY: Stockholm, Sweden, 2002. [Google Scholar]
- Hoyer-Klick, C.; Lefèvre, M.; Schroedter-Homscheidt, M.; Wald, L. MACC-III Deliverable D57.5: USER’ S GUIDE to the MACC-RAD Services on Solar Energy Radiation Resources; Technical Report: Copernicus, European Union’s Earth Observation Programme; 2015; Available online: https://www.researchgate.net/publication/281150019_USER’S_GUIDE_to_the_MACC-RAD_Services_on_solar_energy_radiation_resources_March_2015 (accessed on 2 February 2019).
- Hersbach, H.; Dick, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 7. [Google Scholar]
- Lundström, L.; Wallin, F. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system. Appl. Energy 2016, 161, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.; Bandera, C. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [Google Scholar] [CrossRef]
- Walton, G. Thermal Analysis Research Program Reference Manual-NBSSIR 83-2655; Technical Report; National Bureau of Standards: Washington, DC, USA, 1983.
- Clarke, J.A. Energy Simulation in Building Design; Adam Hilger Lt: Bristol, UK, 1985. [Google Scholar]
- Romero Rodríguez, L.; Nouvel, R.; Duminil, E.; Eicker, U. Setting intelligent city tiling strategies for urban shading simulations. Sol. Energy 2017, 157, 880–894. [Google Scholar] [CrossRef]
- Akander, J. The ORC Method—Effective Modelling of Thermal Performance of Multilayer Building Components. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000. [Google Scholar]
Node | Class I | Class E | Class IE | Class D | Class M |
---|---|---|---|---|---|
1 | 0.10 | 0.50 | 0.40 | 0.33 | 0.10 |
2 | 0.40 | 0.40 | 0.20 | 0.33 | 0.80 |
3 | 0.50 | 0.10 | 0.40 | 0.33 | 0.10 |
Shelter Class | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
0.00 | 0.04 | 0.11 | 0.25 | 0.44 | |
1.00 | 0.90 | 0.70 | 0.50 | 0.30 | |
3.00 | 2.50 | 1.90 | 1.30 | 0.70 |
Description | ISO14N | ERA5 | Transformation |
---|---|---|---|
External air temperature at 2 m | Kelvin to centigrade | ||
Ground temperature at 1.0–2.89 m | Kelvin to centigrade | ||
Wind speed at 10 m | , | ||
Ground albedo | , | ||
Surface thermal radiation downwards | Joule to Watt-hours |
[] | −20 | 0 | 12 | 18 |
[] | 60 | 43 | 28 | 18 |
Parameter | Description | Value(s) | Unit |
---|---|---|---|
Number of floors | 1 | - | |
Floor height | 2.6 | ||
P | Building perimeter | 60 | |
Floor area | 2.6 | ||
Azimuth angles for the external walls | [0, 90, −90, 180] | ||
Surface area fraction for the external walls | [0.17, 0.33, 0.33, 0.17] | - | |
Glazing to floor ratio | 0.15 | - | |
Solar transmittance of the glazing | 0.76 | - | |
Solar transmittance of the window blinds | 0.53 | - | |
Thermal transmittance of the roof | 0.20 | ||
Thermal transmittance of the external walls | 0.72 | ||
Thermal transmittance of the glazing | 2.9 | ||
Thermal transmittance of the ground floor | 0.23 | ||
Areal heat capacity of the external walls | 56 | ||
Areal heat capacity of the external walls | 15 | ||
Areal heat capacity of the external walls | 56 | ||
Specific air flow rate of the ventilation system | 0.35 | ||
Efficiency of the ventilation heat recovery | 0.0 | - | |
Normalized infiltration coefficient | 0.0 | ||
Radiator constant, normalized per floor area | 0.66 | ||
Internal air set-point temperature | 21.0 | ||
Heat transfer due to thermal bridges | 0.0 | ||
Internal heat gains | 3.0 | ||
Calculations interval | 0.5 |
Variable | Hourly | Daily | Monthly |
---|---|---|---|
, | 0.94 (2.6%) | 0.74 (2.0%) | 0.68 (1.8%) |
, | 0.30 | 0.26 | 0.17 |
, | 0.34 | 0.28 | 0.19 |
Shading Class | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 |
---|---|---|---|---|---|---|---|---|---|---|
Building height, m | 18 | 6 | 18 | 6 | 18 | 6 | 18 | 6 | 18 | 6 |
Annual solar reduction, % | 6 | 9 | 11 | 17 | 19 | 28 | 29 | 40 | 38 | 49 |
Model (Variant) | Computation Time, ms |
---|---|
ISO14N (matrix pre-inverted) | 19 |
ISO41N (matrix pre-inverted) | 56 |
ISO14N (matrix inversion each time-step) | 83 |
ISO41N (matrix inversion each time-step) | 755 |
IDA ICE | 18,000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundström, L.; Akander, J.; Zambrano, J. Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate. Energies 2019, 12, 485. https://doi.org/10.3390/en12030485
Lundström L, Akander J, Zambrano J. Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate. Energies. 2019; 12(3):485. https://doi.org/10.3390/en12030485
Chicago/Turabian StyleLundström, Lukas, Jan Akander, and Jesús Zambrano. 2019. "Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate" Energies 12, no. 3: 485. https://doi.org/10.3390/en12030485
APA StyleLundström, L., Akander, J., & Zambrano, J. (2019). Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate. Energies, 12(3), 485. https://doi.org/10.3390/en12030485