Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy
Abstract
:1. Introduction
2. Modeling of Solar Still
3. Experimental Set-Up
4. Results and Discussion
4.1. Comparison of Experimental and Analytical Results
4.2. Parametric Studies Based on the Analytical Model
5. Conclusions and Recommendations
- The analytical and experimental results were in close agreement;
- A 305% increase in daily water productivity resulted from the proposed enhancements;
- The increase in vacuum pressure enhanced the yield of the solar still;
- The increase in wind speed had a detrimental effect on the yield of the solar still;
- The increase in ambient temperature increased the yield of the solar still.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A | Area of Heat Exchanger (m2) |
C | Constant |
Cp | Specific Heat (kJ/kgK) |
Cc | Specific Heat of Geothermal Water (kJ/kgK) |
ΔTgeo | Difference between Ambient Temperature and Geothermal Water Temperature |
Exp. | Experimental |
h | Heat Transfer Coefficient (W/m2K) |
hfg | Heat of Evaporation (kJ/kg) |
g | Gravity (m/s2) |
I | Solar Radiation (W/m2) |
k | Thermal Conductivity(W/mK) |
M | Molar Mass (kg/mol) |
Mass Flow Rate of Water (kg/s) | |
Mass Flow Rate of Geothermal Water (kg/s) | |
NTU | Number of Transfer Units |
P | Pressure (kPa) |
P(T) | Saturated Vapor Pressure at T (kPa) |
R | Gas Constant (kJ/kgK) |
T | Temperature (K) |
U | Overall Heat Transfer Coefficient (W/m2K) |
V | Wind Speed (m/s) |
Greek | |
α | Absorptivity |
β | Constant |
Emissivity | |
Effectiveness of Heat Exchanger | |
τ | Transmisivity |
Stefan-Boltzman Constant | |
ρ | Density (kg/m3) |
μ | Viscosity (Ns/m2) |
Subscript | |
a | Air |
c | Convection |
e | Evaporation |
g | Glass |
m | Mixture |
o | Vacuum |
r | Radiation |
t | Tilted surface |
w | Water |
References
- Saleh, H.A. Evaluation of solar energy research and its applications in Saudi Arabia—20 years of experience. Renew. Sustain. Energy Rev. 2001, 5, 59–77. [Google Scholar]
- Nebbia, G.; Mennozi, G. A short history of water desalination. In Proceedings of the International Symposium, Milano, Italy, 18–19 April 1966; pp. 129–172. [Google Scholar]
- Tiwari, G.N.; Saxena, P.; Thakur, K. Thermal analysis of active solar distillation system. Energy Convers. Manag. 1994, 35, 51–59. [Google Scholar] [CrossRef]
- Abu-Hijleh, B. Enhanced solar still performance using water film cooling of the glass cover. Desalination 1996, 107, 233–242. [Google Scholar] [CrossRef]
- Nijegorodov, N.; Jain, P.; Carlsson, S. Thermal-electrical, high efficiency solar stills. Renew. Energy 1994, 4, 123–127. [Google Scholar] [CrossRef]
- Yadav, Y. Parametric studies on a double basin solar still. Int. J. Sol. Energy 1994, 16, 137–150. [Google Scholar] [CrossRef]
- Yeh, H.; Chen, Z. Energy balances for upward-type, double-effect solar distillers with air flow through the second-effect unit. Energy 1994, 19, 619–626. [Google Scholar] [CrossRef]
- Yadav, Y. Transient analysis of double basin solar still integrated with collector. Desalination 1989, 71, 151–164. [Google Scholar] [CrossRef]
- Ahmed, S.T. Study of single-effect solar still with an internal condenser. Sol. Wind Technol. 1988, 5, 637–643. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Singh, A.K.; Saxena, P.; Rai, S. The performance of multi-effect active distillation system. Int. J. Sol. Energy 1993, 13, 277–287. [Google Scholar] [CrossRef]
- Lawrence, S.A.; Gupta, S.P.; Tiwari, G.N. Experimental validation of thermal analysis of solar still with dye. Int. J. Sol. Energy 1988, 6, 291–305. [Google Scholar] [CrossRef]
- Selvaraj, K.; Natarajan, A. Factors influencing the performance and productivity of solar stills—A review. Desalination 2018, 435, 181–187. [Google Scholar] [CrossRef]
- Al-Nimr, M.; Haddad, O. Water Distiller/Condenser by radiative cooling of ambient air. Renew. Energy 1998, 13, 323–331. [Google Scholar] [CrossRef]
- Haddad, O.; Al-Nimr, M.; Maqableh, A. Enhanced solar still performance using a radiative cooling system. Renew. Energy 2000, 12, 459–469. [Google Scholar] [CrossRef]
- Saadi, Z.; Rahmani, A.; Lachtar, S.; Soualmi, H. Performance evaluation of a new stepped solar still under the desert climatic conditions. Energy Convers. Manag. 2018, 171, 1749–1760. [Google Scholar] [CrossRef]
- Al-harahsheh, M.; Abu-Arabi, M.; Mousa, H.; Alzghoul, Z. Solar desalination using solar still enhanced by external solar collector and PCM. Appl. Therm. Eng. 2018, 128, 1030–1040. [Google Scholar] [CrossRef]
- Nayi, K.H.; Modi, K.V. Pyramid solar still: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 81, 136–148. [Google Scholar] [CrossRef]
- Gao, J.; Li, A.; Xu, X.; Gang, W.; Yan, T. Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings. Renew. Energy 2018, 128, 337–349. [Google Scholar] [CrossRef]
- Sivasakthivel, T.; Philippe, M.; Murugesan, K.; Verma, V.; Hu, P. Experimental thermal performance analysis of ground heat exchangers for space heating and cooling applications. Renew. Energy 2017, 113, 1168–1181. [Google Scholar] [CrossRef]
- Ground-Coupled Heat Exchanger. Available online: https://en.wikipedia.org/wiki/Ground-coupled_heat_exchanger (accessed on 1 November 2018).
- US Department of Energy. Geothermal Heat Pumps. Available online: http://www.energysavers.gov/your_home/space_heating_cooling (accessed on 1 November 2018).
- Bose, J.E.; Ledbetter, C.W.; Partin, J.R. Experimental results of a low-cost solar-assisted heat pump system using earth coil and geo-thermal well storage. In Proceedings of the 4th Annual Heat Pump Technology Conference, Stillwater, OK, USA, 9–10 April 1979. [Google Scholar]
- Xiao, G.; Wang, X.; Ni, M.; Wang, F.; Zhu, W.; Luo, Z.; Cen, K. A review on solar stills for brine desalination. Appl. Energy 2013, 103, 642–652. [Google Scholar] [CrossRef]
- Sivakumar, V.; Sundaram, G.E. Improvement techniques of solar still efficiency: A review. Renew Sustain. Energy Rev. 2013, 28, 246–264. [Google Scholar] [CrossRef]
- Ayoub, G.M.; Malaeb, L.; Saikaly, P.E. Critical variables in the performance of a productivity-enhanced solar still. Sol. Energy 2013, 98, 472–484. [Google Scholar] [CrossRef]
- Nabil, E.; Alaboodi, A. Implementing of Desalination System Utilizing Solar and Subsurface Condensation of Humid Air in Arid Regions. J. Innov. Eng. 2014, 2, 6. [Google Scholar]
- Al-Hussaini, H.; Smith, I.K. Enhancing of solar still productivity using vacuum technology. Energy Convers. Manag. 1995, 36, 1047–1051. [Google Scholar] [CrossRef]
- Tsilingiris, P.T. Combined heat and mass transfer analyses in solar distillation systems—The restrictive conditions and a validity range investigation. Sol. Energy 2012, 86, 3288–3300. [Google Scholar] [CrossRef]
- Tsilingiris, P.T. The influence of binary mixture thermophysical properties in the analysis of heat and mass transfer processes in solar distillation systems. Sol. Energy 2007, 81, 1482–1491. [Google Scholar] [CrossRef]
- Tamimi, A.; Sowayan, A. Optimum Tilt Angles of Flat-plate Solar Collectors at Riyadh, Kingdom of Saudi Arabia. Energy Sources Part A Recov. Util. Environ. Effects 2012, 34, 1213–1221. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the Uncertainties in Experimental Results Experimental Thermal and Fluid Science; Elsevier Science Pub Co., Inc.: New York, NY, USA, 1988. [Google Scholar]
- Chilton, T.H.; Colburn, A.P. Mass transfer (absorption) coefficients—Prediction from data on heat transfer and fluid friction. Ind. Eng. Chem. 1934, 26, 1183–1187. [Google Scholar] [CrossRef]
Parameters | %, Uncertainty |
---|---|
Solar radiation | 0.97 |
Water temperature | 0.63 |
Temperature | 0.86 |
Mass flow rate | 1.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danish, S.N.; El-Leathy, A.; Alata, M.; Al-Ansary, H. Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy. Energies 2019, 12, 539. https://doi.org/10.3390/en12030539
Danish SN, El-Leathy A, Alata M, Al-Ansary H. Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy. Energies. 2019; 12(3):539. https://doi.org/10.3390/en12030539
Chicago/Turabian StyleDanish, Syed Noman, Abdelrahman El-Leathy, Mohanad Alata, and Hany Al-Ansary. 2019. "Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy" Energies 12, no. 3: 539. https://doi.org/10.3390/en12030539
APA StyleDanish, S. N., El-Leathy, A., Alata, M., & Al-Ansary, H. (2019). Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy. Energies, 12(3), 539. https://doi.org/10.3390/en12030539