Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer
Abstract
:1. Introduction
2. PMSM Model and Control Structure
2.1. PMSM Continuous-Time Model
2.2. Discrete-Time Model
2.3. Sensorless Control Structure
3. Comparison of SMO and PILO
3.1. SMO and Its Drawbacks
3.2. Continuous-Time Model of the Proposed PILO
3.3. Discrete-Time Model of PILO
4. Results and Discussion
4.1. Simulation Results
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suzuki, T.; Shimizu, Y.; Iwaji, Y.; Takahata, R.; Aoyagi, S. Minimum Current Start-Up Method by Combined Use of Two Position-Sensorless Controls. IEEE Trans. Ind. Appl. 2015, 51, 3086–3093. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, Y.C.; Sul, S.K.; Kim, J.H.; Yu, R.S. Suppression of Injection Voltage Disturbance for High-Frequency Square-Wave Injection Sensorless Drive with Regulation of Induced High-Frequency Current Ripple. IEEE Trans. Ind. Appl. 2016, 52, 302–312. [Google Scholar] [CrossRef]
- Zaim, S.; Nahid-Mobarakeh, B.; Meibody-Tabar, F. Robust Position Sensorless Control of Nonsalient PMSM at Standstill and Low Speeds. IEEE J. Emerg. Select. Top. Power Electron. 2014, 2, 640–650. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Yang, S.-C.; Tu, K.-H. Comparative Evaluation of a Permanent Magnet Machine Saliency-Based Drive with Sine-Wave and Square-Wave Voltage Injection. Energies 2018, 11, 2189. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, I.; Nam, K.; Yang, J.; Hwang, T. Sensorless Control of PMSM in a High-Speed Region Considering Iron Loss. IEEE Trans. Ind. Electron. 2015, 62, 6151–6159. [Google Scholar] [CrossRef]
- Quang, N.K.; Hieu, N.T.; Ha, Q.P. FPGA-Based Sensorless PMSM Speed Control Using Reduced-Order Extended Kalman Filters. IEEE Trans. Ind. Electron. 2014, 61, 6574–6582. [Google Scholar] [CrossRef]
- Hu, K.W.; Liaw, C.M. Position sensorless surface-mounted permanent-magnet synchronous generator and its application to power DC microgrid. IET Power Electron. 2015, 8, 1636–1650. [Google Scholar] [CrossRef]
- Teja, A.V.R.; Chakraborty, C.; Maiti, S.; Hori, Y. A New Model Reference Adaptive Controller for Four Quadrant Vector Controlled Induction Motor Drives. IEEE Trans. Ind. Electron. 2012, 59, 3757–3767. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, M.; Hua, W.; Zhang, B. Sensorless Control Strategy of Electrical Variable Transmission Machines for Wind Energy Conversion Systems. IEEE Trans. Magnet. 2013, 49, 3383–3386. [Google Scholar] [CrossRef]
- Idkhajine, L.; Monmasson, E.; Maalouf, A. Fully FPGA-Based Sensorless Control for Synchronous AC Drive Using an Extended Kalman Filter. IEEE Trans. Ind. Electron. 2012, 59, 3908–3918. [Google Scholar] [CrossRef]
- Park, J.B.; Wang, X. Sensorless Direct Torque Control of Surface-Mounted Permanent Magnet Synchronous Motors with Nonlinear Kalman Filtering. Energies 2018, 11, 969. [Google Scholar] [CrossRef]
- Chan, T.F.; Wang, W.; Borsje, P.; Wong, Y.K.; Ho, S.L. Sensorless permanent-magnet synchronous motor drive using a reduced-order rotor flux observer. IET Electr. Power Appl. 2008, 2, 88–98. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Shen, Z.; Zou, J.; Li, C.; Liu, H. Current Control of Grid-Connected Inverter with LCL Filter Based on Extended-State Observer Estimations Using Single Sensor and Achieving Improved Robust Observation Dynamics. IEEE Trans. Ind. Electron. 2017, 64, 5428–5439. [Google Scholar] [CrossRef]
- Dominguez, J.R.; Navarrete, A.; Meza, M.A.; Loukianov, A.G.; Canedo, J. Digital Sliding-Mode Sensorless Control for Surface-Mounted PMSM. IEEE Trans. Ind. Inform. 2014, 10, 137–151. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J. Design of Iterative Sliding Mode Observer for Sensorless PMSM Control. IEEE Tran. Control Syst. Technol. 2013, 21, 1394–1399. [Google Scholar] [CrossRef]
- Qiao, Z.; Shi, T.; Wang, Y.; Yan, Y.; Xia, C.; He, X. New Sliding-Mode Observer for Position Sensorless Control of Permanent-Magnet Synchronous Motor. IEEE Trans. Ind. Electron. 2013, 60, 710–719. [Google Scholar] [CrossRef]
- Bernardes, T.; Montagner, V.F.; Grundling, H.A.; Pinheiro, H. Discrete-Time Sliding Mode Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine. IEEE Trans. Ind. Electron. 2014, 61, 1679–1691. [Google Scholar] [CrossRef]
- Ertugrul, M.; Kaynak, O.; Sabanovic, A.; Ohnishi, K. A generalized approach for Lyapunov design of sliding mode controllers for motion control applications. In Proceedings of the 4th IEEE International Workshop on Advanced Motion Control, Mie, Japan, 18–21 March 1996; Volume 1, pp. 407–412. [Google Scholar]
- Kim, H.; Son, J.; Lee, J. A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM. IEEE Trans. Ind. Electron. 2011, 58, 4069–4077. [Google Scholar]
- Song, X.; Fang, J.; Han, B.; Zheng, S. Adaptive Compensation Method for High-Speed Surface PMSM Sensorless Drives of EMF-Based Position Estimation Error. IEEE Trans. Power Electron. 2016, 31, 1438–1449. [Google Scholar] [CrossRef]
- Lee, K.W.; Park, S.; Jeong, S. A Seamless Transition Control of Sensorless PMSM Compressor Drives for Improving Efficiency Based on a Dual-Mode Operation. IEEE Trans. Power Electron. 2015, 30, 1446–1456. [Google Scholar] [CrossRef]
Parameters | Units | Values |
---|---|---|
Number of phases | 3 | |
Stator phase resistance | 40 | |
Stator phase inductance | 215 | |
Flux induced by magnets | 0.043 | |
Pole pairs | 4 | |
DC supply voltage | V | 30 |
Parameters | Units | Values |
---|---|---|
Bandwidth | rad/s | 6283 |
Parameters | Units | Values |
---|---|---|
Cut-off frequency of LPF (low pass filter) | rad/s | 1112 |
SMO gain | 30 | |
SMO sign function linear zone | 0.6 |
Parameters | Units | Values |
---|---|---|
Stator phase inductance | 430 | |
Stator phase resistance | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, Y.; Feng, L.; Jiang, S.; Wang, Q.; Hu, J. Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer. Energies 2019, 12, 877. https://doi.org/10.3390/en12050877
Wang B, Wang Y, Feng L, Jiang S, Wang Q, Hu J. Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer. Energies. 2019; 12(5):877. https://doi.org/10.3390/en12050877
Chicago/Turabian StyleWang, Baochao, Yangrui Wang, Liguo Feng, Shanlin Jiang, Qian Wang, and Jianhui Hu. 2019. "Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer" Energies 12, no. 5: 877. https://doi.org/10.3390/en12050877
APA StyleWang, B., Wang, Y., Feng, L., Jiang, S., Wang, Q., & Hu, J. (2019). Permanent-Magnet Synchronous Motor Sensorless Control Using Proportional-Integral Linear Observer with Virtual Variables: A Comparative Study with a Sliding Mode Observer. Energies, 12(5), 877. https://doi.org/10.3390/en12050877