Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Nanoparticles/Nanofluid Characterization
2.2.2. Asphaltenes Stability Tests
2.2.3. Asphaltenes Adsorption Isotherms
2.2.4. Viscosity and Rheological Behavior Measurements
3. Rheological Modelling
4. Results and Discussion
4.1. Nanoparticles/Nanofluid Characterization
4.2. Diluents Evaluation for Carrier Fluid Formulation
4.2.1. Effect of Different Diluents on the Viscosity Reduction
4.2.2. DDR Evaluation
4.3. Nanofluids Formulation
4.3.1. Asphaltenes Adsorption
4.3.2. Nanoparticles-Asphaltenes Interaction Effect in the Viscosity Reduction
4.3.3. Effect of Nanofluid in the Viscosity Reduction
4.4. Perdurability Tests
4.4.1. Hysteresis Loop Tests
4.4.2. Evaluation of Viscosity Reduction Durability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owen, N.A.; Inderwildi, O.R.; King, D.A. The status of conventional world oil reserves—Hype or cause for concern? Energy Policy 2010, 38, 4743–4749. [Google Scholar] [CrossRef]
- Alboudwarej, H.; Felix, J.; Taylor, S.; Badry, R.; Bremner, C.; Brough, B.; Skeates, C.; Baker, A.; Palmer, D.; Pattison, K. La importancia del petróleo pesado. Oilfield Rev. 2006, 18, 38–59. [Google Scholar]
- Youngquist, W. The post-petroleum paradigm—And population. Popul. Environ. 1999, 20, 297–315. [Google Scholar] [CrossRef]
- Luo, P.; Gu, Y. Effects of asphaltene content and solvent concentration on heavy oil viscosity. In Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium, Calgary, AB, Canada, 1–3 November 2005. [Google Scholar]
- Kröcher, O.; Köppel, R.A.; Fröba, M.; Baiker, A. Silica Hybrid Gel Catalysts Containing Group (VIII) Transition Metal Complexes: Preparation, Structural, and Catalytic Properties in the Synthesis of N,N-Dimethylformamide and Methyl Formate from Supercritical Carbon Dioxide. J. Catal. 1998, 178, 284–298. [Google Scholar] [CrossRef]
- Pierre, C.; Barré, L.; Pina, A.; Moan, M. Composition and heavy oil rheology. Oil Gas Sci. Technol. 2004, 59, 489–501. [Google Scholar] [CrossRef]
- Taborda, E.A.; Alvarado, V.; Franco, C.A.; Cortés, F.B. Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. Fuel 2017, 189, 322–333. [Google Scholar] [CrossRef]
- Yen, T.; Chilingarian, G. Asphaltenes and asphalts, Develop-ments in Petroleum Science; Elsevier Science BV: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Mullins, O.C. The asphaltenes. Annu. Rev. Anal. Chem. 2011, 4, 393–418. [Google Scholar] [CrossRef] [PubMed]
- Mullins, O.C.; Andrews, B.; Pomerantz, A.; Dong, C.; Zuo, J.Y.; Pfeiffer, T.; Latifzai, A.S.; Elshahawi, H.; Barre, L.E.; Larter, S. Impact of Asphaltene nanoscience on understanding oilfield reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011. [Google Scholar]
- Mullins, O.C.; Sabbah, H.; Eyssautier, J.; Pomerantz, A.E.; Barré, L.; Andrews, A.B.; Ruiz-Morales, Y.; Mostowfi, F.; McFarlane, R.; Goual, L. Advances in asphaltene science and the Yen–Mullins model. Energy Fuels 2012, 26, 3986–4003. [Google Scholar] [CrossRef]
- Franco, C.A.; Lozano, M.M.; Acevedo, S.; Nassar, N.N.; Cortés, F.B. Effects of resin I on asphaltene adsorption onto nanoparticles: A novel method for obtaining asphaltenes/resin isotherms. Energy Fuels 2015, 30, 264–272. [Google Scholar] [CrossRef]
- Urquhart, R. Heavy oil transportation-present and future. J. Can. Pet. Technol. 1986, 25. [Google Scholar] [CrossRef]
- Nuñez, G.; Guevara, E.; Gonzalez, J. Highly viscous oil transportation methods in the Venezuela industry. In Proceedings of the 15th World Petroleum Congress, Beijing, China, 12–17 October 1997; pp. 495–502. [Google Scholar]
- Yaghi, B.M.; Al-Bemani, A. Heavy crude oil viscosity reduction for pipeline transportation. Energy Sources 2002, 24, 93–102. [Google Scholar] [CrossRef]
- Hart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336. [Google Scholar] [CrossRef]
- Martínez-Palou, R.; de Lourdes Mosqueira, M.; Zapata-Rendón, B.; Mar-Juárez, E.; Bernal-Huicochea, C.; de la Cruz Clavel-López, J.; Aburto, J. Transportation of heavy and extra-heavy crude oil by pipeline: A review. J. Pet. Sci. Eng. 2011, 75, 274–282. [Google Scholar] [CrossRef]
- Escojido, D.; Urribarri, O.; Gonzalez, J. Part 1: Transportation of Heavy Crude Oil and Natural Bitumen. In Proceedings of the 13th World Petroleum Congress, Buenos Aires, Argentina, 20–25 October 1991; pp. 15–22. [Google Scholar]
- Saniere, A.; Hénaut, I.; Argillier, J. Pipeline transportation of heavy oils, a strategic, economic and technological challenge. Oil Gas Sci. Technol. 2004, 59, 455–466. [Google Scholar] [CrossRef]
- Argillier, J.; Barre, L.; Brucy, F.; Dournaux, J.; Henaut, I.; Bouchard, R. Influence of asphaltenes content and dilution on heavy oil rheology. In Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium, Porlamar, Venezuela, 12–14 March 2001. [Google Scholar]
- Argillier, J.; Henaut, I.; Heraud, J.-P.; Glenat, P. Heavy oil dilution. In Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium, Calgary, AB, Canada, 1–3 November 2005. [Google Scholar]
- Gateau, P.; Hénaut, I.; Barré, L.; Argillier, J. Heavy oil dilution. Oil Gas Sci. Technol. 2004, 59, 503–509. [Google Scholar] [CrossRef]
- Jamaluddin, A.; Nazarko, T.; Sills, S.; Fuhr, B. Deasphalted Oil-A Natural Asphaltene Solvent. SPE Prod. Facil. 1996, 11, 161–165. [Google Scholar] [CrossRef]
- Franco, C.A.; Zabala, R.; Cortés, F.B. Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. J. Pet. Sci. Eng. 2017, 157, 39–55. [Google Scholar] [CrossRef]
- Zabala, R.; Franco, C.; Cortés, F. Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Zabala, R.; Mora, E.; Botero, O.; Cespedes, C.; Guarin, L.; Franco, C.; Cortes, F.; Patino, J.; Ospina, N. Nano-technology for asphaltenes inhibition in Cupiagua South Wells. In Proceedings of the IPTC 2014: International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10–12 December 2014. [Google Scholar]
- Guzmán, J.D.; Betancur, S.; Carrasco-Marín, F.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy Fuels 2016, 30, 2052–2059. [Google Scholar] [CrossRef]
- Betancur, S.; Carmona, J.C.; Nassar, N.N.; Franco, C.A.; Cortés, F.B. Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs. Ind. Eng. Chem. Res. 2016, 55, 6122–6132. [Google Scholar] [CrossRef]
- Franco, C.A.; Nassar, N.N.; Ruiz, M.A.; Pereira-Almao, P.; Cortés, F.B. Nanoparticles for inhibition of asphaltenes damage: Adsorption study and displacement test on porous media. Energy Fuels 2013, 27, 2899–2907. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel 2016, 184, 222–232. [Google Scholar] [CrossRef]
- Alomair, O.A.; Matar, K.M.; Alsaeed, Y.H. Nanofluids application for heavy oil recovery. In Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, Australia, 14–16 October 2014. [Google Scholar]
- Aristizábal-Fontal, J.E.; Cortés, F.B.; Franco, C.A. Viscosity reduction of extra heavy crude oil by magnetite nanoparticle-based ferrofluids. Adsorpt. Sci. Technol. 2017, 36, 23–45. [Google Scholar] [CrossRef]
- Taborda, E.A.; Alvarado, V.; Cortés, F.B. Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Convers. Manag. 2017, 148, 30–42. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Ruiz, M.A.; Alvarado, V.; Cortés, F.B. Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy Fuels 2017, 31, 1329–1338. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Franco, C.A.; Montoya, T.; Nassar, N.N.; Pereira-Almao, P.; Cortés, F.B. Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy Fuels 2013, 27, 7336–7347. [Google Scholar] [CrossRef]
- Brauneur, S.; Emmet, P.; Teller, E. Adsorption of gases in multi molecular layer. J. Am. Chem. Soc 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface area and pore texture of catalysts. Catal. Today 1998, 41, 207–219. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar] [CrossRef]
- Asomaning, S. Test methods for determining asphaltene stability in crude oils. Pet. Sci. Technol. 2003, 21, 581–590. [Google Scholar] [CrossRef]
- Gafanhao, M.; Sánchez, E.J.I.; Linares, J.G.D. Determinación del punto de precipitación de los asfaltenos en crudos venezolanos. Ciencia e Ingeniería 2008, 29, 225–232. [Google Scholar]
- Salager, J.; Fernández, A. Módulo de enseñanza en fenómenos interfaciales. Venezuela: Universidad de los Andes y Ministerio de Ciencia y Tecnología. Available online: http://www.firp.ula.ve/site/es/cuadernos-firpgratuitos (accessed on 17 March 2019).
- Montoya, T.; Coral, D.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “Chemical Theory”. Energy Fuels 2014, 28, 4963–4975. [Google Scholar] [CrossRef]
- Chalaris, M.; Samios, J. Systematic molecular dynamics studies of liquid N,N-dimethylformamide using optimized rigid force fields: Investigation of the thermodynamic, structural, transport and dynamic properties. J. Chem. Phys. 2000, 112, 8581–8594. [Google Scholar] [CrossRef]
- Páez, M.; Vergara, M.; Cantero, P. Propiedades volumétricas de la mezcla N,N-dimetilformamida+ 1-propanol a diferentes temperaturas. Revista Colombiana de Química 2012, 41, 75–88. [Google Scholar]
- Sarpkaya, T. Flow of non-Newtonian fluids in a magnetic field. AIChE J. 1961, 7, 324–328. [Google Scholar] [CrossRef]
- Shao, S.; Lo, E.Y. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 2003, 26, 787–800. [Google Scholar] [CrossRef] [Green Version]
- Nik, W.W.; Ani, F.; Masjuki, H.; Giap, S.E. Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Ind. Crop. Prod. 2005, 22, 249–255. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Hyperbolic rheological model with shear stress limit for acrylamide polymer modified bentonite drilling muds. J. Pet. Sci. Eng. 2014, 122, 38–47. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Smart cement rheological and piezoresistive behavior for oil well applications. J. Pet. Sci. Eng. 2015, 135, 50–58. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Effect of nanoclay on the electrical resistivity and rheological properties of smart and sensing bentonite drilling muds. J. Pet. Sci. Eng. 2015, 130, 86–95. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A.; Qu, Q. Characterizing the hydraulic fracturing fluid modified with nano silica proppant. In Proceedings of the AADE Fluids Technical Conference and Exhibition, Houston, TX, USA, 12–13 April 2016; pp. 15–16. [Google Scholar]
- Hunter, R.J. Zeta Potential in Colloid Science: Principles and Applications; Academic Press: Cambridge, MA, USA, 2013; Volume 2. [Google Scholar]
- Minale, M.; Merola, M.C.; Carotenuto, C. Effect of solvents on the microstructure aggregation of a heavy crude oil. Fuel Process. Technol. 2018, 177, 299–308. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Ruiz, M.A.; Alvarado, V.; Cortés, F.B. Anomalous Heavy-Oil Rheological Thinning Behavior upon Addition of Nanoparticles: Departure from Einstein’s Theory. Chem. Eng. Commun. 2017, 204, 648–657. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Livescu, S. Mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines—A review. J. Pet. Sci. Eng. 2012, 98, 174–184. [Google Scholar] [CrossRef]
- Mortazavi-Manesh, S.; Shaw, J.M. Thixotropic rheological behavior of Maya crude oil. Energy Fuels 2014, 28, 972–979. [Google Scholar] [CrossRef]
- Cheng, D.C.; Evans, F. Phenomenological characterization of the rheological behaviour of inelastic reversible thixotropic and antithixotropic fluids. Br. J. Appl. Phys. 1965, 16, 1599. [Google Scholar] [CrossRef]
- Hahn, S.J.; Ree, T.; Eyring, H. Flow mechanism of thixotropic substances. Ind. Eng. Chem. 1959, 51, 856–857. [Google Scholar] [CrossRef]
- Moore, F. The rheology of ceramic slip and bodies. Trans. Br. Ceram. Soc. 1959, 58, 470–492. [Google Scholar]
- Peter, S. Zur Theorie der Rheopexie. Rheol. Acta 1964, 3, 178–180. [Google Scholar] [CrossRef]
- Behzadfar, E.; Hatzikiriakos, S.G. Viscoelastic properties and constitutive modelling of bitumen. Fuel 2013, 108, 391–399. [Google Scholar] [CrossRef]
- Visintin, R.F.; Lapasin, R.; Vignati, E.; D’Antona, P.; Lockhart, T.P. Rheological behavior and structural interpretation of waxy crude oil gels. Langmuir 2005, 21, 6240–6249. [Google Scholar] [CrossRef]
- Wardhaugh, L.; Boger, D. The measurement and description of the yielding behavior of waxy crude oil. J. Rheol. 1991, 35, 1121–1156. [Google Scholar] [CrossRef]
- Ghannam, M.T.; Hasan, S.W.; Abu-Jdayil, B.; Esmail, N. Rheological properties of heavy & light crude oil mixtures for improving flowability. J. Pet. Sci. Eng. 2012, 81, 122–128. [Google Scholar]
- Cortés, F.B.; Montoya, T.; Acevedo, S.; Nassar, N.N.; Franco, C.A. Adsorption-desorption of n-c7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro 2016, 6, 89–106. [Google Scholar]
Nanoparticles | dp50 (nm) | SBET (m2·g−1) | pHpzc |
---|---|---|---|
S9 | 9 | 389 | 2.5 |
S11 | 11 | 210 | 2.8 |
S66 | 66 | 50 | 1.5 |
Fluid | Density (g·mL−1) | Viscosity at 25 °C (cP) | Surface Tension in EHO (mN·m−1) |
---|---|---|---|
Carrier fluid | 0.9399 | 8.9 | 26 |
Nanofluid | 0.9541 | 10.5 | 21 |
Colloidal Instability Index | |
---|---|
EHO | 0.5 |
EHO-Pentane | 0.57 |
EHO-Heptane | 0.57 |
EHO-Diesel | 0.57 |
EHO-Xylene | 0.46 |
Model | Parameters | EHO | EHO-S9 | EHO-S11 | EHO-S66 |
---|---|---|---|---|---|
Cross | × 103 (cP) | 982 | 829 | 870 | 932 |
× 103 (cP) | 125 | 108 | 115 | 120 | |
(s) | 0.022 | 0.0223 | 0.0221 | 0.022 | |
m | 2.04 | 2.1 | 2.06 | 2.04 | |
RMSE% | 0.29 | 0.34 | 0.22 | 0.17 | |
Carreau | × 103 (cP) | 1011 | 832 | 862 | 933 |
× 103 (cP) | 134,893 | 84,385 | 102,000 | 105,000 | |
(s) | 0.026 | 0.026 | 0.024 | 0.024 | |
N | 0.930 | 0.847 | 0.934 | 0.907 | |
RMSE% | 0.027 | 0.015 | 0.015 | 0.014 |
Model | Parameter | Carrier Fluid | Nanofluid | ||
---|---|---|---|---|---|
Breakdown | Build-Up | Breakdown | Build-Up | ||
Cross | × 103 (cP) | 141 | 37 | 124 | 12 |
× 103 (cP) | 49 | 11 | 21 | 3 | |
(s) | 0.0331 | 0.0308 | 0.0332 | 0.0324 | |
m | 1.744 | 1.381 | 2.048 | 1.168 | |
RMSE% | 0.76 | 0.13 | 2.42 | 0.15 | |
Carreau | × 103 (cP) | 136 | 38 | 126 | 22 |
× 103 (cP) | 17,378 | 15,000 | 6819 | 6384 | |
(s) | 0.0203 | 0.058 | 0.0235 | 0.0709 | |
N | 1.795 | 0.524 | 1.774 | 0.611 | |
RMSE% | 0.693 | 0.03 | 3.787 | 0.279 | |
Vipulanandan | (Pa.s)−1 | 0.004542 | - | 0.005282 | - |
(Pa)−1 | 0.000063 | - | 0.000043 | - | |
(Pa) | 15,977 | - | 23,449 | - | |
RSME% | 1.53 | - | 1.92 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes, D.; Orozco, W.; Taborda, E.A.; Franco, C.A.; Cortés, F.B. Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils. Energies 2019, 12, 1068. https://doi.org/10.3390/en12061068
Montes D, Orozco W, Taborda EA, Franco CA, Cortés FB. Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils. Energies. 2019; 12(6):1068. https://doi.org/10.3390/en12061068
Chicago/Turabian StyleMontes, Daniel, Wendy Orozco, Esteban A. Taborda, Camilo A. Franco, and Farid B. Cortés. 2019. "Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils" Energies 12, no. 6: 1068. https://doi.org/10.3390/en12061068
APA StyleMontes, D., Orozco, W., Taborda, E. A., Franco, C. A., & Cortés, F. B. (2019). Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils. Energies, 12(6), 1068. https://doi.org/10.3390/en12061068