A Novel Approach to Stabilize Foam Using Fluorinated Surfactants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Foam Stability Test
3. Results and Discussion
4. Conclusions
- (1)
- The foamability of the hydrocarbon surfactant was more compared to the fluorinated surfactant regardless of gas type, salinity, and temperature.
- (2)
- The foam generated using fluorinated surfactant is more stable compared to the hydrocarbon surfactant.
- (3)
- The mixture of hydrocarbon and zwitterionic surfactant could have improved foamability and foam stability compared to the individual surfactants.
- (4)
- The foamability and foam stability was higher when the air was used as a gas medium.
- (5)
- The foamability of all surfactants increased at high temperature due to Brownian motion in the liquid and enhanced kinematic viscosity leads to better foam generation. However, the foam stability reduced at high temperature.
- (6)
- In the synthetic seawater, the foamability and foam stability of all investigated surfactants were higher compared to deionized water.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farajzadeh, R.; Muruganathan, R.; Rossen, W.; Krastev, R. Effect of gas type on foam film permeability and its implications for foam flow in porous media. Adv. Colloid Interface Sci. 2011, 168, 71–78. [Google Scholar] [CrossRef]
- Gu, M.; Mohanty, K. Rheology of polymer-free foam fracturing fluids. J. Pet. Sci. Eng. 2015, 134, 87–96. [Google Scholar] [CrossRef]
- Saxena, A.; Pathak, A.; Ojha, K. Synergistic effects of ionic characteristics of surfactants on aqueous foam stability, gel strength, and rheology in the presence of neutral polymer. Ind. Eng. Chem. Res. 2014, 53, 19184–19191. [Google Scholar] [CrossRef]
- Ahmed, S.; Elraies, K.A.; Hashmet, M.R.; Alnarabiji, M.S. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions. Energies 2018, 11, 782. [Google Scholar] [CrossRef]
- Ahmed, S.; Elraies, K.A.; Hanamertani, A.S.; Hashmet, M.R. Viscosity models for polymer free CO2 foam fracturing fluid with the effect of surfactant concentration, salinity and shear rate. Energies 2017, 10, 1970. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.; Zhou, Y. Flow Behavior and Displacement Mechanisms of Nanoparticle Stabilized Foam Flooding for Enhanced Heavy Oil Recovery. Energies 2017, 10, 560. [Google Scholar] [CrossRef]
- Núñez-López, V.; Gil-Egui, R.; Hosseini, S.A. Environmental and Operational Performance of CO2-EOR as a CCUS Technology: A Cranfield Example with Dynamic LCA Considerations. Energies 2019, 12, 448. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.; Han, H.; Wang, L.; Qian, K.; Pang, J. Experimental Investigation on the Effects of CO2 Displacement Methods on Petrophysical Property Changes of Ultra-Low Permeability Sandstone Reservoirs Near Injection Wells. Energies 2019, 12, 327. [Google Scholar] [CrossRef]
- Qian, K.; Yang, S.; Dou, H.; Wang, Q.; Wang, L.; Huang, Y. Experimental investigation on microscopic residual oil distribution during CO2 Huff-and-Puff process in tight oil reservoirs. Energies 2018, 11, 2843. [Google Scholar] [CrossRef]
- Hanamertani, A.S.; Pilus, R.M.; Manan, N.A.; Mutalib, M.I.A. The use of ionic liquids as additive to stabilize surfactant foam for mobility control application. J. Pet. Sci. Eng. 2018, 167, 192–201. [Google Scholar] [CrossRef]
- Farajzadeh, R.; Andrianov, A.; Zitha, P. Investigation of immiscible and miscible foam for enhancing oil recovery. Ind. Eng. Chem. Res. 2009, 49, 1910–1919. [Google Scholar] [CrossRef]
- Sakai, T.; Kaneko, Y. The effect of some foam boosters on the foamability and foam stability of anionic systems. J. Surfactants Deterg. 2004, 7, 291–295. [Google Scholar] [CrossRef]
- Sun, L.; Bai, B.; Wei, B.; Pu, W.; Wei, P.; Li, D.; Zhang, C. Recent advances of surfactant-stabilized N2/CO2 foams in enhanced oil recovery. Fuel 2019, 241, 83–93. [Google Scholar] [CrossRef]
- Osei-Bonsu, K.; Shokri, N.; Grassia, P. Foam stability in the presence and absence of hydrocarbons: From bubble-to bulk-scale. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 514–526. [Google Scholar] [CrossRef]
- Verma, A.; Chauhan, G.; Ojha, K. Characterization of α-olefin sulfonate foam in presence of cosurfactants: Stability, foamability and drainage kinetic study. J. Mol. Liq. 2018, 264, 458–469. [Google Scholar] [CrossRef]
- Telmadarreie, A. Static and Dynamic Performance of Wet Foam and Polymer-Enhanced Foam in the Presence of Heavy Oil. Colloids Interfaces 2018, 2, 38. [Google Scholar] [CrossRef]
- Bal, D.K.; Patra, S.; Ganguly, S. Effectiveness of foam-gel formulation in homogenizing the CO2 front during subsurface sequestration. J. Nat. Gas Sci. Eng. 2015, 27, 994–1004. [Google Scholar] [CrossRef]
- Zeng, Y.; Ma, K.; Farajzadeh, R.; Puerto, M.; Biswal, S.L.; Hirasaki, G.J. Effect of Surfactant Partitioning Between Gaseous Phase and Aqueous Phase on CO2 Foam Transport for Enhanced Oil Recovery. Transp. Porous Media 2016, 114, 777–793. [Google Scholar] [CrossRef]
- Xue, Z.; Worthen, A.J.; Da, C.; Qajar, A.; Ketchum, I.R.; Alzobaidi, S.; Huh, C.; Prodanović, M.A.; Johnston, K.P. Ultradry carbon dioxide-in-water foams with viscoelastic aqueous phases. Langmuir 2015, 32, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Chukwudeme, E.A.; Hamouda, A.A. Enhanced oil recovery (EOR) by miscible CO2 and water flooding of asphaltenic and non-asphaltenic oils. Energies 2009, 2, 714–737. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, Y.; Yang, W.; Wang, J.; Fan, Y.; Lu, J. Experimental Study of Sulfonate Gemini Surfactants as Thickeners for Clean Fracturing Fluids. Energies 2018, 11, 3182. [Google Scholar] [CrossRef]
- Nazari, N.; Tsau, J.-S.; Barati, R. CO2 foam stability improvement using polyelectrolyte complex nanoparticles prepared in produced water. Energies 2017, 10, 516. [Google Scholar] [CrossRef]
- He, H.; Fu, J.; Hou, B.; Yuan, F.; Guo, L.; Li, Z.; You, Q. Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs. Energies 2018, 11, 1950. [Google Scholar] [CrossRef]
- Azad, M.S.; Sultan, A.S.; Nuaim, S.A.; Mahmoud, M.; Hussein, I.W. Could VES be a part of Hybrid option to recover Heavy oil in Complex Heavy oil Reservoirs. In Proceedings of the SPE Heavy Oil Conference-Canada, Calgary, AB, Canada, 10–12 June 2014. [Google Scholar]
- Mahmoud, M.A.; Hussein, I.A.; Sahib, M.; Sultan, A.S. Rheological Assessment of VES as an EOR Fluid in Carbonate Reservoir. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 31 March–2 April 2014. [Google Scholar]
- Kamal, M.S.; Shakil Hussain, S.M.; Fogang, L.T. A Zwitterionic Surfactant Bearing Unsaturated Tail for Enhanced Oil Recovery in High-Temperature High-Salinity Reservoirs. J. Surfactants Deterg. 2018, 21, 165–174. [Google Scholar] [CrossRef]
- Hussain, S.S.; Kamal, M.S.; Fogang, L.T. Effect of internal olefin on the properties of betaine-type zwitterionic surfactants for enhanced oil recovery. J. Mol. Liq. 2018, 266, 43–50. [Google Scholar] [CrossRef]
- Hussain, S.S.; Animashaun, M.A.; Kamal, M.S.; Ullah, N.; Hussein, I.A.; Sultan, A.S. Synthesis, Characterization and Surface Properties of Amidosulfobetaine Surfactants Bearing Odd-Number Hydrophobic Tail. J. Surfactants Deterg. 2016, 19, 413–420. [Google Scholar] [CrossRef]
- Kamal, M.S.; Hussain, S.S.; Sultan, A.S. Development of Novel Amidosulfobetaine Surfactant–Polymer Systems for EOR Applications. J. Surfactants Deterg. 2016, 19, 989–997. [Google Scholar] [CrossRef]
- Kamal, M.S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfactants Deterg. 2016, 19, 1–14. [Google Scholar] [CrossRef]
- Mukerjee, P. Salt effects on nonionic association colloids. J. Phys. Chem. 1965, 69, 4038–4040. [Google Scholar] [CrossRef]
- Adkins, S.S.; Chen, X.; Chan, I.; Torino, E.; Nguyen, Q.P.; Sanders, A.W.; Johnston, K.P. Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants. Langmuir 2010, 26, 5335–5348. [Google Scholar] [CrossRef]
- Puerto, M.; Hirasaki, G.J.; Miller, C.A.; Barnes, J.R. Surfactant systems for EOR in high-temperature, high-salinity environments. SPE J. 2012, 17, 11–19. [Google Scholar] [CrossRef]
- Da, C.; Alzobaidi, S.; Jian, G.; Zhang, L.; Biswal, S.L.; Hirasaki, G.J.; Johnston, K.P. Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150 °C in high salinity brine. J. Pet. Sci. Eng. 2018, 166, 880–890. [Google Scholar] [CrossRef]
- Effendy, I.; Maibach, H.I. Surfactants and experimental irritant contact dermatitis. Contact Dermat. 1995, 33, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.S.; Sultan, A.; Hussein, I.; Hussain, S.; AlSofi, A.M. Screening of Surfactants and Polymers for High Temperature High Salinity Carbonate Reservoirs. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 23–26 April 2018. [Google Scholar]
- Al-Amodi, A.O.; Al-Mubaiyedh, U.A.; Sultan, A.S.; Kamal, M.S.; Hussein, I.A. Novel fluorinated surfactants for enhanced oil recovery in carbonate reservoirs. Can. J. Chem. Eng. 2016, 94, 454–460. [Google Scholar] [CrossRef]
- Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A.; Feng, Y. Rheological Properties of Thermoviscosifying Polymers in High-temperature and High-salinity Environments. Can. J. Chem. Eng. 2015, 93, 1194–1200. [Google Scholar] [CrossRef]
- Kamal, M.S.; Adebayo, A.R.; Fogang, L.T.; Barri, A. Improving Gas Sequestration by Surfactant-Alternating-Gas Injection: A Comparative Evaluation of Surfactant Type and Concentration. J. Surfactants Deterg. 2018, 21, 667–675. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, Y.; Zhang, L.; Ren, S.; Lu, J.; Wang, X.; Fan, N. The stability study of CO2 foams at high pressure and high temperature. J. Pet. Sci. Eng. 2017, 154, 234–243. [Google Scholar] [CrossRef]
- Princen, H.; Mason, S. The permeability of soap films to gases. J. Colloid Sci. 1965, 20, 353–375. [Google Scholar] [CrossRef]
- Sun, R.; Hu, W.; Duan, Z. Prediction of nitrogen solubility in pure water and aqueous NaCl solutions up to high temperature, pressure, and ionic strength. J. Solut. Chem. 2001, 30, 561–573. [Google Scholar] [CrossRef]
- Zhao, H.; Fedkin, M.V.; Dilmore, R.M.; Lvov, S.N. Carbon dioxide solubility in aqueous solutions of sodium chloride at geological conditions: Experimental results at 323.15, 373.15, and 423.15 K and 150bar and modeling up to 573.15 K and 2000bar. Geochim. Cosmochim. Acta 2015, 149, 165–189. [Google Scholar] [CrossRef]
- Wang, C.; Fang, H.; Gong, Q.; Xu, Z.; Liu, Z.; Zhang, L.; Zhang, L.; Zhao, S. Roles of catanionic surfactant mixtures on the stability of foams in the presence of oil. Energy Fuels 2016, 30, 6355–6364. [Google Scholar] [CrossRef]
- Sun, J.; Jing, J.; Brauner, N.; Han, L.; Ullmann, A. An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation. J. Ind. Eng. Chem. 2018, 68, 99–108. [Google Scholar] [CrossRef]
- Behera, M.R.; Varade, S.R.; Ghosh, P.; Paul, P.; Negi, A.S. Foaming in micellar solutions: Effects of surfactant, salt, and oil concentrations. Ind. Eng. Chem. Res. 2014, 53, 18497–18507. [Google Scholar] [CrossRef]
- Varade, S.R.; Ghosh, P. Foaming in aqueous solutions of zwitterionic surfactant: Effects of oil and salts. J. Dispers. Sci. Technol. 2017, 38, 1770–1784. [Google Scholar] [CrossRef]
- Wang, J.; Nguyen, A.V.; Farrokhpay, S. A critical review of the growth, drainage and collapse of foams. Adv. Colloid Interface Sci. 2016, 228, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Mandal, A. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery. Appl. Surf. Sci. 2017, 420, 9–20. [Google Scholar] [CrossRef]
- Wang, H.; Guo, W.; Zheng, C.; Wang, D.; Zhan, H. Effect of temperature on foaming ability and foam stability of typical surfactants used for foaming agent. J. Surfactants Deterg. 2017, 20, 615–622. [Google Scholar] [CrossRef]
Ions | Concentration (mg/L) |
---|---|
Sodium | 18,300 |
Calcium | 650 |
Magnesium | 2083 |
Sulfate | 4290 |
Chloride | 32,200 |
Bicarbonate | 120 |
TDS | 57,643 |
Surfactant | Gas | Water | T (°C) | tFVS50% (s) | tFLS50% |
---|---|---|---|---|---|
A | Air | SW | 25 | >5400 | 60 |
B | Air | SW | 25 | >5400 | 135 |
A + B | Air | SW | 25 | >5400 | 286 |
A | CO2 | SW | 25 | 485 | 84 |
B | CO2 | SW | 25 | 332 | 114 |
A + B | CO2 | SW | 25 | 495 | 246 |
A | CO2 | DW | 25 | 215 | 67 |
B | CO2 | DW | 25 | 158 | 73 |
A + B | CO2 | DW | 25 | 269 | 98 |
A | CO2 | SW | 80 | 163 | 61 |
B | CO2 | SW | 80 | 123 | 60 |
A + B | CO2 | SW | 80 | 216 | 68 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, M.S. A Novel Approach to Stabilize Foam Using Fluorinated Surfactants. Energies 2019, 12, 1163. https://doi.org/10.3390/en12061163
Kamal MS. A Novel Approach to Stabilize Foam Using Fluorinated Surfactants. Energies. 2019; 12(6):1163. https://doi.org/10.3390/en12061163
Chicago/Turabian StyleKamal, Muhammad Shahzad. 2019. "A Novel Approach to Stabilize Foam Using Fluorinated Surfactants" Energies 12, no. 6: 1163. https://doi.org/10.3390/en12061163
APA StyleKamal, M. S. (2019). A Novel Approach to Stabilize Foam Using Fluorinated Surfactants. Energies, 12(6), 1163. https://doi.org/10.3390/en12061163