Assessment of the Energy Potential of Chicken Manure in Poland
Abstract
:1. Introduction
- biogas production through anaerobic digestion process combined with cogeneration of heat and power based on internal combustion (IC) engine,
- raw manure pre-drying preceding syngas generation in updraft gasification process combined with cogeneration of heat and power based on an organic Rankine cycle (ORC) module,
- raw manure pre-drying preceding combustion in fluidized-bed combustor combined with cogeneration of heat and power based on an organic Rankine cycle (ORC) module,
- raw manure pre-drying preceding combustion in fluidized-bed combustor for direct heat generation.
2. Material, Methods and Input Data
- theoretical potential: volume of energy that can be useful based on the availability of equipment with 100% efficiency (losses in the process are not accounted for), and under the assumption that the total available potential is harnessed for energy production, including specific collection factor and alternative use factor;
- technical potential: this part of the theoretical potential, which can be practically utilised, yet reduced due to technical restrictions (efficiency of available equipment, internal losses in the process, geographical location, energy storage losses). It is usually derived on the basis of detailed technical analysis;
- economic (market) potential: relative to fuel prices, tax rates, economic parameters and levels of subsidies. It is the part of the technical potential that can be applied after accounting for the criteria of economic tools (detailed economic analysis of profitability);
- applicable potential: energy from biomass, which can be ultimately used in energy production (usually smaller than the economic one).
2.1. Quantitative Potential of Chicken Manure
2.2. Qualitative Potential of Chicken Manure
2.2.1. Ultimate, Proximate and Heating Value Analyses
2.2.2. Energy Potential Assessment
- theoretical level resulting from the overall maximum amount of chicken manure which can be considered theoretically available for energy generation within fundamental bio-physical limits,
- technical level which takes into account energy losses due to collection, transport, storage, pre-treatment (for example drying) and energy conversion from the fuel to the useful form of energy (heat or/and electricity).
3. Results and Discussion
3.1. Quantitative Potential
3.2. Theoretical Qualitive Potential
3.3. Thechnical Qualitive Potential
3.4. Technical and Environmental Issues of Proposed Energy Generation Routes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
availability factor | |
ash content, % by weight | |
biogas yield, m3·Mg−1 of VS | |
weight of chicken manure, Mg | |
carbon content, % by weight | |
specific electricity demand for drying, kWh·kg−1 of evaporated water | |
energy potential, TJ | |
higher heating value, MJ·Mg−1 (MJ·m−3) | |
hydrogen content, % by weight | |
lower heating value, MJ·Mg−1 (MJ·m−3) | |
moisture content, % by weight | |
nitrogen content, % by weight | |
oxygen content, % by weight | |
specific heat demand for drying, kWh·kg−1 of evaporated water | |
syngas yield, m3·kg−1 of dried mass input | |
sulphur content, % by weight | |
volatile matter, % by weight | |
organic matter, % by weight | |
Subscripts: | |
available | |
as received basis | |
biogas | |
dry basis | |
dry and ash free basis | |
electrical | |
type of rearing system | |
number of the energy conversion path (scenario) | |
total | |
technical | |
theoretical, thermal | |
wet basis | |
efficiency | |
internal combustion | |
fluidized bed combustion | |
organic Rankine cycle |
References
- Saidura, R.; Abdelaziza, E.A.; Demirbasb, A.; Hossaina, M.S.; Mekhilefc, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Qian, X.; Lee, S.; Soto, A.-M.; Chen, G. Regression Model to Predict the Higher Heating Value of Poultry Waste from Proximate Analysis. Resources 2018, 7, 39. [Google Scholar] [CrossRef]
- Dalólio, F.S.; Nogueira da Silva, J.; Carneiro de Oliveira, A.C.; Ferreira Tinôco, I.F.; Barbosa, R.C.; Resende, M.O.; Teixeira Albino, L.F.; Teixeira Coelho, S. Poultry Litter as Biomass Energy: A Review and Future Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 941–949. [Google Scholar] [CrossRef]
- Wieremiej, W. Usefulness of Poultry Wastes in Fertilization of Maize (Zea mays L.) and Their Influence on Selected Soil Properties (In Polish). Ph.D. Thesis, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland, 30 March 2017. [Google Scholar]
- Billen, P.; Costa, J.; Van der Aa, L.; Van Caneghem, J.; Vandecasteele, C. Electricity from poultry manure: A cleaner alternative to direct land application. J. Clean. Prod. 2015, 96, 467–475. [Google Scholar] [CrossRef]
- Kelleher, B.P.; Leahy, J.J.; Henihan, A.M.; O’Dwyer, T.F.; Sutton, D.; Leahy, M.J. Advances in poultry litter disposal technology: A review. Bioresour. Technol. 2002, 83, 27–36. [Google Scholar] [CrossRef]
- Florin, N.H.; Maddocks, A.R.; Wood, S.; Harris, A.T. High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia. Waste Manag. 2019, 24, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Tańczuk, M.; Junga, R.; Werle, S.; Chabiński, M.; Ziółkowski, Ł. Experimental analysis of the fixed bed gasification process of the mixtures of the chicken manure with biomass. Renew. Energy Rev. 2019, 136, 1055–1063. [Google Scholar] [CrossRef]
- Reardon, J.P.; Lilley, A.; Brown, K.; Beard, K.; Wimberly, J.; Avens, J. Demonstration of a Small Modular Biopower System Using Poultry Litter; DOE SBIR Phase-I Final Report; Community Power Corporation: Englewood, CO, USA, 2001. Available online: https://www.osti.gov/servlets/purl/794292/ (accessed on 12 December 2018).
- European Egg Processors Association. EU Statistics. Available online: http://www.eepa.info/Statistics.aspx (accessed on 12 November 2018).
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 12 November 2018).
- International Energy Agency. Energy Policies of IEA Countries, Poland 2016 Review; IEA Publications: Paris, France, 2017; ISBN 978-92-64-27230-9. [Google Scholar]
- Tańczuk, M.; Radziewicz, W.; Olszewski, E.; Skorek, J. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis. In Proceedings of the International Conference on Energy, Environment and Material Systems (EEMS), E3S Web of Conferences, Polanica Zdrój, Poland, 13–15 September 2017; Volume 19. [Google Scholar] [CrossRef]
- Tańczuk, M.; Masiukiewicz, M.; Anweiler, S.; Junga, R. Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag. Energies 2018, 11, 796. [Google Scholar] [CrossRef]
- Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C. Harmonising bioenergy resource potentials: Methodological lessons from review of state of the art bioenergy potential assessments. Renew. Sustain. Energy Rev. 2012, 16, 6598–6630. [Google Scholar] [CrossRef]
- Gonzalez-Salazara, M.A.; Morini, M.; Pinelli, M.; Spina, P.R.; Venturini, M.; Finkenrath, M.; Poganietz, W.R. Methodology for estimating biomass energy potential and its application to Colombia. Appl. Energy 2014, 136, 781–796. [Google Scholar] [CrossRef] [Green Version]
- Lourinho, G.; Brito, P. Assessment of biomass energy potential in a region of Portugal (Alto Alentejo). Energy 2015, 81, 189–201. [Google Scholar] [CrossRef]
- Nadel, S.; Shipley, A.M.; Elliott, R.N. The Technical, Economic and Achievable Potential for Energy Efficiency in the United States: A Meta-Analysis of Recent Studies; American Council for Energy-Efficient Economy (ACEEE): Washington, DC, USA, 2004. [Google Scholar]
- Karaj, S.; Rehl, T.; Leis, H.; Müller, J. Analysis of biomass residues potential for electrical energy generation in Albania. Renew. Sustain. Energy Rev. 2010, 14, 493–499. [Google Scholar] [CrossRef]
- Tańczuk, M.; Ulbrich, R. Assessment of energetic potential of biomass. Proc. ECOpole 2009, 3, 23–26. [Google Scholar]
- Main Veterinary Inspectorate. Registers and Records Kept in Main Veterinary Inspectorate (In Polish). Available online: https://www.wetgiw.gov.pl/handel-eksport-import/rejestr-podmiotow-prowadzacych-dzialalnosc-nadzorowana (accessed on 12 November 2018).
- Statistics Poland. Farm Animals in 2017. Available online: http://stat.gov.pl/en (accessed on 12 November 2018).
- Dobrzański, Z. The Relationship between Modern Poultry Production Systems and the Protection of Natural and Productive Environment (In Polish). First Agricultural Portal. 2002. Available online: http://www.ppr.pl/artykul-ppr-2924.php?_resourcePK=2924 (accessed on 7 November 2018).
- Mayoral, M.C.; Izquierdo, M.T.; Andrés, J.M.; Rubio, B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochim. Acta 2001, 370, 91–97. [Google Scholar] [CrossRef]
- Quiroga, G.; Castrillón, L.; Fernández-Nava, Y.; Marańón, E. Physico-chemical analysis and calorific values of poultry manure. Waste Manag. 2010, 30, 880–884. [Google Scholar] [CrossRef]
- Staroń, P.; Kowalski, Z.; Staroń, A.; Banach, M. Thermal conversion of granules from feathers, meat and bone meal and poultry litter to ash with fertilizing properties. Agric. Food Sci. 2017, 26, 173–180. [Google Scholar] [CrossRef]
- Lynch, D.; Henihan, A.M.; Bowen, B.; Lynch, D.; McDonnell, K.; Kwapinski, W.; Leahy, J.J. Utilisation of poultry litter as an energy feedstock. Biomass BioEnergy 2013, 49, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Trziszka, T. Jajczarstwo: Nauka, Technologia, Praktyka; Wydawnictwo Akademii Rolniczej we Wrocławiu: Wrocław, Poland, 2000. [Google Scholar]
- Polesek-Karczewska, S.; Turzyński, T.; Kardaś, D.; Heda, Ł. Front velocity in the combustion of blends of poultry litter with straw. Fuel Process. Technol. 2018, 176, 307–315. [Google Scholar] [CrossRef]
- Toptas, A.; Yildrim, Y.; Duman, G.; Yanik, Y. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresour. Technol. 2015, 177, 328–336. [Google Scholar] [CrossRef]
- Yurdakul, S. Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry. Renew. Energy 2016, 89, 215–223. [Google Scholar] [CrossRef]
- Whitely, N.; Ozao, R.; Artiaga, R.; Cao, Y.; Pan, W.P. Multi-utilization of chicken litter as biomass source. Part I. Combustion. Energy Fuel 2006, 20, 2660–2665. [Google Scholar] [CrossRef]
- QGIS—A Free and Open Source Geographic Information System. Available online: https://www.qgis.org/ (accessed on 23 January 2019).
- Oliveira, M.O.; Somariva, R.; Ando Junior, O.H.; Neto, J.M.; Bretas, A.S.; Perrone, O.E.; Reversat, J.H. Biomass Electricity Generation Using Industry Poultry Waste. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’12), Santiago de Compostela, Spain, 28–30 March 2012; pp. 1650–1654. [Google Scholar]
- Chang, F.H. Energy and sustainability comparisons of anaerobic digestion and thermal technologies for processing animal waste. In Proceedings of the 2004 ASAE Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar]
- Singh, K.; Lee, K.; Worley, J.; Risse, L.M.; Das, K.C. Anaerobic digestion of poultry litter: A review. Appl. Eng. Agric. 2010, 26, 677–688. [Google Scholar] [CrossRef]
- Watson, J.; Zhang, Y.; Si, B.; Chen, W.-T.; de Souza, R. Gasification of biowaste: A critical review and outlooks. Renew. Sustain. Energy Rev. 2018, 83, 1–17. [Google Scholar] [CrossRef]
- Taupe, N.; Lynch, D.; Wnetrzak, R.; Kwapinska, M.; Kwapinski, W.; Leahy, J. Updraft gasification of poultry litter at farm-scale—A case study. Waste Manag. 2016, 50, 324–333. [Google Scholar] [CrossRef]
- Brammer, J.G.; Bridgwater, A.V. Drying technologies for an integrated gasification bio-energy plant. Renew. Sustain. Energy Rev. 1999, 3, 243–289. [Google Scholar] [CrossRef]
- Lynch, D.; Henihant, A.M.; Kwapinski, W.; Zhang, L.; Leahy, J. Ash agglomeration and deposition during combustion of poultry litter in a bubbling fluidized-bed combustor. Energy Fuels 2013, 27, 4684–4694. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 592/2014 of 3 June 2014 Amending Regulation (EU) No 142/2011 as Regards the Use of Animal by-Products and Derived Products as a Fuel in Combustion Plants. Available online: https: eur-lex.europa.eu/ (accessed on 12 January 2019).
Province | Laying Hens | Broilers | Overall Chickens | ||
---|---|---|---|---|---|
Cage | Litter | Free-Range | Litter | ||
Dolnośląskie (I) | 1949.7 | 414.2 | 67.9 | 3463.0 | 5894.8 |
Kujawsko-Pomorskie (II) | 1686.6 | 226.8 | 57.9 | 9842.3 | 11,813.6 |
Lubelskie (III) | 1632.6 | 352.2 | 100.7 | 4469.5 | 6555.0 |
Lubuskie (IV) | 1196.3 | 47.7 | 10.8 | 3463.0 | 4717.8 |
Łódzkie (V) | 2057.9 | 255.0 | 129.2 | 9422.7 | 11,864.8 |
Małopolskie (VI) | 2107.0 | 433.9 | 49.4 | 2473.6 | 5063.9 |
Mazowieckie (VII) | 9449.1 | 842.6 | 335.6 | 27,333.0 | 37,960.3 |
Opolskie (VIII) | 337.8 | 475.1 | 37.9 | 3215.6 | 4066.4 |
Podkarpackie (IX) | 1699.0 | 367.5 | 32.6 | 3339.3 | 5438.3 |
Podlaskie (X) | 616.7 | 690.2 | 17.2 | 11,254.8 | 12,578.8 |
Pomorskie (XI) | 1481.6 | 181.6 | 55.6 | 4250.8 | 5969.6 |
Śląskie (XII) | 1595.1 | 685.1 | 19.7 | 6170.9 | 8470.8 |
Świętokrzyskie (XIII) | 1088.5 | 86.7 | 203.1 | 4205.1 | 5583.4 |
Warmińsko-Mazurskie (XIV) | 913.9 | 20.8 | 29.1 | 3620.0 | 4583.8 |
Wielkopolskie (XV) | 16,773.9 | 554.5 | 290.0 | 17,201.2 | 34,819.6 |
Zachodniopomorskie (XVI) | 1016.0 | 269.4 | 96.0 | 9947.9 | 11,329.3 |
Poland–overall | 45,601.7 | 5903.3 | 1,532.7 | 123,672.7 | 176,710.4 |
Chicken Type | Daily Volume Per Bird (g) | Density of Droppings (kg·m−3) | |
---|---|---|---|
Pullets | Ready to lay pullets | 100 | 605 |
Meat pullets | 110 | 680 | |
Broilers | 65 | 622 | |
Adult hens | Laying hens | 150 | 650 |
Parent laying hens | 155 | 670 | |
Meat chickens | 160 | 680 |
System | Proximate Analysis (wt. %) | Ultimate Analysis (wt.%, d) | Heating Values (MJ·kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
* | * | ||||||||||
Cage | 70.9 | 67.5 | 16.9 | 15.6 | 39.67 | 4.72 | 5.49 | 0.40 | 34.12 | 12.744 | 3.201 |
Litter | 18.1 | 69.9 | 18.1 | 12.0 | 42.86 | 5.57 | 5.50 | 0.68 | 33.39 | 16.546 | 13.189 |
Free-range | 54.9 | 50.4 | 5.2 | 44.4 | 21.85 | 2.50 | 1.73 | 0.28 | 29.24 | 8.577 | 3.262 |
No. | Generation Path (Scenario) | Process Stages |
---|---|---|
1 | PATH 1-Anaerobic digestion and cogeneration | I. Anaerobic (co)digestion II. Heat and electricity generation in IC engine |
2 | PATH 2-Gasification and cogeneration | I. Drying II. Gasification III. Heat and electricity generation in ORC unit |
3 | PATH 3-Combustion and cogeneration | I. Drying II. Fluidized-bed boiler combustion FBC III. Heat and electricity generation in ORC unit |
4 | PATH 4-Combustion | I. Drying II. Fluidized-bed boiler combustion FBC |
Parameter | Unit | Value | |
---|---|---|---|
Cage Manure | Litter Manure | ||
PATH 1 | |||
% by weight | 84.4 | 88.0 | |
m3·Mg−1 of VS | 300 | 270 | |
MJ·m−3 | 20 | 20 | |
- | 0.50 | 0.50 | |
- | 0.38 | 0.38 | |
PATH 2 | |||
% by weight | 70.9 | 18.1 | |
% by weight | 15.0 | 15.0 | |
kWh·kg−1 of evaporated water | 0.90 | 0.90 | |
kWh·kg−1 of evaporated water | 0.08 | 0.08 | |
m3·kg−1 of dried mass input | 2.5 | 2.5 | |
MJ·m−3 | 3.5 | 4.5 | |
- | 0.7 | 0.7 | |
- | 0.18 | 0.18 | |
PATH 3 | |||
% by weight | 70.9 | 18.1 | |
% by weight | 35 | 18.1 | |
kWh·kg−1 of evaporated water | 0.90 | - | |
kWh·kg−1 of evaporated water | 0.08 | - | |
* | MJ·Mg−1 | 3201 | 7728 |
- | 0.7 | 0.7 | |
- | 0.18 | 0.18 | |
PATH 4 | |||
% by weight | 70.9 | 18.1 | |
% by weight | 15.0 | 18.1 | |
kWh·kg−1 of evaporated water | 0.90 | - | |
kWh·kg−1 of evaporated water | 0.08 | - | |
* | MJ·Mg−1 | 3201 | 7728 |
- | 0.85 | 0.87 |
Province | Laying Hens | Broilers | Overall Chickens | ||
---|---|---|---|---|---|
Cage | Litter | Free-Range | Litter | ||
Dolnośląskie (I) | 78,280 | 19,125 | 2726 | 65,233 | 165,364 |
Kujawsko-Pomorskie (II) | 67,717 | 10,472 | 2325 | 185,399 | 265,913 |
Lubelskie (III) | 65,549 | 16,262 | 4043 | 84,192 | 170,046 |
Lubuskie (IV) | 48,031 | 2202 | 434 | 65,233 | 115,900 |
Łódzkie (V) | 82,625 | 11,774 | 5187 | 177,495 | 277,081 |
Małopolskie (VI) | 84,596 | 20,034 | 1983 | 46,595 | 153,209 |
Mazowieckie (VII) | 379,381 | 38,905 | 13,474 | 514,872 | 946,632 |
Opolskie (VIII) | 13,563 | 21,937 | 1522 | 60,572 | 97,593 |
Podkarpackie (IX) | 68,215 | 16,968 | 1309 | 62,902 | 149,395 |
Podlaskie (X) | 24,761 | 31,868 | 691 | 212,007 | 269,326 |
Pomorskie (XI) | 59,486 | 8,385 | 2232 | 80,072 | 150,176 |
Śląskie (XII) | 64,043 | 31,633 | 791 | 116,241 | 212,708 |
Świętokrzyskie (XIII) | 43,703 | 4003 | 8154 | 79,211 | 135,072 |
Warmińsko-Mazurskie (XIV) | 36,693 | 960 | 1168 | 68,190 | 107,012 |
Wielkopolskie (XV) | 673,472 | 25,603 | 11,644 | 324,019 | 1,034,737 |
Zachodniopomorskie (XVI) | 40,792 | 12,439 | 3854 | 187,389 | 244,474 |
Poland–overall | 1,830,908 | 272,570 | 61,538 | 2,329,623 | 4,494,639 |
Province | Cage | Litter | Free-Range | Total |
---|---|---|---|---|
Dolnośląskie (I) | 250.6 | 1112.6 | 8.9 | 1372.1 |
Kujawsko-Pomorskie (II) | 216.8 | 2583.3 | 7.6 | 2807.7 |
Lubelskie (III) | 209.8 | 1324.9 | 13.2 | 1547.9 |
Lubuskie (IV) | 153.7 | 889.4 | 1.4 | 1044.6 |
Łódzkie (V) | 264.5 | 2496.3 | 16.9 | 2777.7 |
Małopolskie (VI) | 270.8 | 878.8 | 6.5 | 1156.0 |
Mazowieckie (VII) | 1214.4 | 7303.8 | 44.0 | 8562.1 |
Opolskie (VIII) | 43.4 | 1088.2 | 5.0 | 1136.6 |
Podkarpackie (IX) | 218.4 | 1053.4 | 4.3 | 1276.0 |
Podlaskie (X) | 79.3 | 3216.5 | 2.3 | 3298.0 |
Pomorskie (XI) | 190.4 | 1166.7 | 7.3 | 1364.4 |
Śląskie (XII) | 205.0 | 1950.3 | 2.6 | 2157.9 |
Świętokrzyskie (XIII) | 139.9 | 1097.5 | 26.6 | 1264.0 |
Warmińsko-Mazurskie (XIV) | 117.5 | 912.0 | 3.8 | 1033.3 |
Wielkopolskie (XV) | 2155.8 | 4611.2 | 38.0 | 6804.9 |
Zachodniopomorskie (XVI) | 130.6 | 2635.5 | 12.6 | 2778.7 |
Poland–overall | 5860.7 | 34,320.3 | 200.7 | 40,381.8 |
Generation Scenario | Cage System | Litter System | Total | Overall Potential | |||
---|---|---|---|---|---|---|---|
Heat | Electricity | Heat | Electricity | Heat | Electricity | ||
PATH 1 | 1079 | 820 | 4051 | 3899 | 5130 | 3899 | 9029 |
PATH 2 | 1632 | 651 | 15,682 | 4051 | 17,315 | 4702 | 22,017 |
PATH 3 | 2339 | 796 | 19,220 | 4942 | 21,559 | 5738 | 27,297 |
PATH 4 | 3099 | 0 | 23,888 | 0 | 26,987 | 0 | 26,987 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tańczuk, M.; Junga, R.; Kolasa-Więcek, A.; Niemiec, P. Assessment of the Energy Potential of Chicken Manure in Poland. Energies 2019, 12, 1244. https://doi.org/10.3390/en12071244
Tańczuk M, Junga R, Kolasa-Więcek A, Niemiec P. Assessment of the Energy Potential of Chicken Manure in Poland. Energies. 2019; 12(7):1244. https://doi.org/10.3390/en12071244
Chicago/Turabian StyleTańczuk, Mariusz, Robert Junga, Alicja Kolasa-Więcek, and Patrycja Niemiec. 2019. "Assessment of the Energy Potential of Chicken Manure in Poland" Energies 12, no. 7: 1244. https://doi.org/10.3390/en12071244
APA StyleTańczuk, M., Junga, R., Kolasa-Więcek, A., & Niemiec, P. (2019). Assessment of the Energy Potential of Chicken Manure in Poland. Energies, 12(7), 1244. https://doi.org/10.3390/en12071244