Evaluation Method for the Hourly Average CO2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating
Abstract
:1. Introduction
2. Review of Existing Evaluation Methods for CO2eq. Intensity
2.1. De-Coupled Approach
2.2. Coupled Approach
3. Evaluating the Hourly Average CO2eq. Intensity
3.1. Data Retrieval and Pre-Processing
3.1.1. Electricity Use per Bidding Zone
- i is the “index of EGTs” ranging from 1 to m
- j is the “index of a specific BZ”
- g is the “hour of the year” ranging from 1 to 8760 (or 8784)
3.1.2. Emission Factors per Electricity Generation Technology
3.2. Calculation Methodology
- i is the “index of EGTs” ranging from 1 to m
- j is the “index of BZs” ranging from 1 to n
- i is the “index of EGTs” ranging from 1 to m
- j is the “index of a specific BZ” ranging from 1 to n
3.3. Applicability of the Methodology
3.4. CO2eq. Intensities in Scandinavian Bidding Zones
4. Case Study Using Demand Response for Heating
4.1. Case Building
4.2. Demand Response Strategies
4.3. Case Study Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
BZ | Bidding zone | LCA | Life-cycle assessment |
CI | Carbon intensity | LCT | Low CO2eq. intensity threshold |
CSC | Control strategy carbon | MPC | Model-predictive control |
CSP | Control strategy price | MRIO | Multi-regional input–output |
DHW | Domestic hot water | n50 | Air changes per hour at 50 Pa pressure difference |
DR | Demand response | ||
EGT | Electricity generation technology | PRBC | Predictive rule-based control |
Em. | Emissions | SH | Space heating |
ENTSO-E | European Network of TSOs for Electricity | TSO | Transmission system operator |
TSP | Temperature set-point | ||
HCT | High CO2eq. intensity threshold | ZEB | Zero Emission Building |
HDS | Heat distribution system | ηHR | Heat recovery effectiveness |
HVAC | Heating, ventilation, and air-conditioning | max | Maximum |
min | Minimum |
Appendix A
Electricity Generation Technology (EGT) | Emission Factor [gCO2eq./kWhe] | Name of EGT in Ecoinvent (for Reproduction Purposes) | Emission Factor (gCO2eq./kWhe) | |
---|---|---|---|---|
IPCC | EEA | Ecoinvent (Applied Here) | ||
Biomass | 740 | - | Electricity, high voltage {SE}| heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 | Alloc Rec, U | 60 1 |
Fossil brown coal/Lignite | 820 | - | Electricity, high voltage {DE}| electricity production, lignite | Alloc Rec, U | 1240 |
Fossil coal-derived gas | - | Electricity, high voltage {DE}| treatment of coal gas, in power plant | Alloc Rec, U | 1667 | |
Fossil gas | 490 | - | Electricity, high voltage {DK}| heat and power co-generation, natural gas, conventional power plant, 100MW electrical | Alloc Rec, U | 529 |
Fossil hard coal | 1001 | - | Electricity, high voltage {DK}| heat and power co-generation, hard coal | Alloc Rec, U | 1266 |
Fossil oil | - | Electricity, high voltage {DK}| heat and power co-generation, oil | Alloc Rec, U | 1000 | |
Fossil oil shale | - | No data in Ecoinvent (assumed value) | 1000 | |
Fossil peat | - | Electricity, high voltage {FI}| electricity production, peat | Alloc Rec, U | 1071 | |
Geothermal | 38 | - | Electricity, high voltage {DE}| electricity production, deep geothermal | Alloc Rec, U | 95 |
Hydro pumped storage | 24 | - | Electricity, high voltage {NO}| electricity production, hydro, pumped storage | Alloc Rec, U | 62 |
Hydro run-of-river and poundage | 24 | - | Electricity, high voltage {SE}| electricity production, hydro, run-of-river | Alloc Rec, U | 5 |
Hydro water reservoir | 24 | - | Electricity, high voltage {NO}| electricity production, hydro, reservoir, alpine region | Alloc Rec, U | 8 |
Marine | 24 | - | No data in Ecoinvent (assumed value - as wind offshore) | 18 |
Nuclear | 12 | - | Electricity, high voltage {SE}| electricity production, nuclear, pressure water reactor | Alloc Rec, U | 13 |
Other | - | No data in Ecoinvent (assumed value - avg. fossil fuels) | 979 | |
Other RES | - | No data in Ecoinvent (assumed value - avg. RES) | 46 | |
Solar | 45 | - | Electricity, low voltage {DK}| electricity production, photovoltaic, 3kWp slanted-roof installation, single-Si, panel, mounted | Alloc Rec, U | 144 |
Waste | - | Electricity, for reuse in municipal waste incineration only {DK}| treatment of municipal solid waste, incineration | Alloc Rec, U | 500 | |
Wind offshore | 12 | - | Electricity, high voltage {DK}| electricity production, wind, 1-3MW turbine, offshore | Alloc Rec, U | 18 |
Wind onshore | 11 | - | Electricity, high voltage {DK}| electricity production, wind, 1-3MW turbine, onshore | Alloc Rec, U | 14 |
Imports from all bidding zones with calculated hourly data | - | 0 | 0 | |
Imports from Russia | - | - | Electricity, high voltage {RU}| market for | Alloc Rec, U | 862 |
Imports from Estonia | - | 762 | Electricity, high voltage {EE}| market for | Alloc Rec, U | 1179 |
Imports from Poland | - | 671 | Electricity, high voltage {PL}| market for | Alloc Rec, U | 1225 |
Imports from Belgium | - | 212 | Electricity, high voltage {BE}| market for | Alloc Rec, U | 365 |
Imports from Great Britain | - | 389 | Electricity, high voltage {GB}| market for | Alloc Rec, U | 762 |
References
- Aduda, K.O.; Labeodan, T.; Zeiler, W.; Boxem, G.; Zhao, Y. Demand side flexibility: Potentials and building performance implications. Sustain. Cities Soc. 2016, 22, 146–163. [Google Scholar] [CrossRef]
- Clauß, J.; Finck, C.; Vogler-Finck, P.; Beagon, P. Control strategies for building energy systems to unlock demand side flexibility—A review. In Proceedings of the 15th International Conference of the International Building Performance Simulation Association, San Francisco, CA, USA, 7–9 August 2017. [Google Scholar]
- International Energy Agency (IEA). Key World Energy Statistics; International Energy Agency: Paris, France, 2015; Volume 82, p. 6. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Applied Energy 2012, 93, 371–389. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Gu, J.; Schmidt, F.; Li, W. Measures to improve energy demand flexibility in buildings for demand response (DR): A review. Energy Build. 2018, 177, 125–139. [Google Scholar] [CrossRef]
- Yin, R.; Kara, E.C.; Li, Y.; DeForest, N.; Wang, K.; Yong, T.; Stadler, M. Quantifying flexibility of commercial and residential loads for demand response using setpoint changes. Appl. Energy 2016, 177, 149–164. [Google Scholar] [CrossRef]
- Haider, H.T.; See, O.H.; Elmenreich, W. A review of residential demand response of smart grid. Renew. Sustain. Energy Rev. 2016, 59, 166–178. [Google Scholar] [CrossRef]
- Vandermeulen, A.; van der Heijde, B.; Helsen, L. Controlling district heating and cooling networks to unlock flexibility: A review. Energy 2018, 151, 103–115. [Google Scholar] [CrossRef]
- Vandermeulen, A.; Vandeplas, L.; Patteeuw, D.; Sourbron, M.; Helsen, L. Flexibility offered by residential floor heating in a smart grid context: The role of heat pumps and renewable energy sources in optimization towards different objectives. In Proceedings of the 12th IEA Heat Pump Conference, Rotterdam, The Netherlands, 15–18 May 2017. [Google Scholar]
- Lopes, R.A.; Chambel, A.; Neves, J.; Aelenei, D.; Martins, J. A literature review of methodologies used to assess the energy flexibility of buildings. Energy Procedia 2016, 91, 1053–1058. [Google Scholar] [CrossRef]
- Junker, R.G.; Azar, A.G.; Lopes, R.A.; Lindberg, K.B.; Reynders, G.; Relan, R.; Madsen, H. Characterizing the energy flexibility of buildings and districts. Appl. Energy 2018, 225, 175–182. [Google Scholar] [CrossRef]
- Finck, C.; Li, R.; Kramer, R.; Zeiler, W. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems. Appl. Energy 2017, 209, 409–425. [Google Scholar] [CrossRef]
- Péan, T.; Ortiz, J.; Salom, J. Impact of Demand-Side Management on Thermal Comfort and Energy Costs in a Residential nZEB. Buildings 2017, 7, 37. [Google Scholar] [CrossRef]
- Lizana, J.; Friedrich, D.; Renaldi, R.; Chacartegui, R. Energy flexible building through smart demand-side management and latent heat storage. Appl. Energy 2018, 230, 471–485. [Google Scholar] [CrossRef]
- Clauß, J.; Stinner, S.; Sartori, I.; Georges, L. Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating. Appl. Energy 2019, 237, 500–518. [Google Scholar] [CrossRef]
- Fischer, D.; Bernhardt, J.; Madani, H.; Wittwer, C. Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV. Appl. Energy 2017, 204, 93–105. [Google Scholar] [CrossRef]
- Alimohammadisagvand, B.; Jokisalo, J.; Kilpeläinen, S.; Ali, M.; Sirén, K. Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control. Appl. Energy 2016, 174, 275–287. [Google Scholar] [CrossRef]
- Alimohammadisagvand, B.; Jokisalo, J.; Sirén, K. Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building. Appl. Energy 2018, 209, 167–179. [Google Scholar] [CrossRef]
- Le Dréau, J.; Heiselberg, P. Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy 2016, 111, 991–1002. [Google Scholar] [CrossRef]
- Dar, U.I.; Sartori, I.; Georges, L.; Novakovic, V. Advanced control of heat pumps for improved flexibility of Net-ZEB towards the grid. Energy Build. 2014, 69, 74–84. [Google Scholar] [CrossRef]
- Vogler-Finck, P.J.C.; Wisniewski, R.; Popovski, P. Reducing the carbon footprint of house heating through model predictive control—A simulation study in Danish conditions. Sustain. Cities Soc. 2018, 42, 558–573. [Google Scholar] [CrossRef]
- Heidmann Pedersen, T.; Hedegaard, R.E.; Petersen, S. Space heating demand response potential of retrofitted residential apartment blocks. Energy Build. 2017, 141, 158–166. [Google Scholar] [CrossRef]
- Hedegaard, R.E.; Pedersen, T.H.; Petersen, S. Multi-market demand response using economic model predictive control of space heating in residential buildings. Energy Build. 2017, 150, 253–261. [Google Scholar] [CrossRef]
- Dahl Knudsen, M.; Petersen, S. Demand response potential of model predictive control of space heating based on price and carbon dioxide intensity signals. Energy Build. 2016, 125, 196–204. [Google Scholar] [CrossRef]
- Péan, T.Q.; Salom, J.; Ortiz, J. Environmental and Economic Impact of Demand Response Strategies for Energy Flexible Buildings. Proc. BSO 2018, 2018, 277–283. [Google Scholar]
- Patteeuw, D.; Bruninx, K.; Arteconi, A.; Delarue, E.; D’haeseleer, W.; Helsen, L. Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems. Appl. Energy 2015, 151, 306–319. [Google Scholar] [CrossRef]
- De Coninck, R.; Baetens, R.; Saelens, D.; Woyte, A.; Helsen, L. Rule-based demand-side management of domestic hot water production with heat pumps in zero energy neighbourhoods. J. Build. Perform. Simul. 2014, 7, 271–288. [Google Scholar] [CrossRef]
- Killian, M.; Kozek, M. Ten questions concerning model predictive control for energy efficient buildings. Build. Environ. 2016, 105, 403–412. [Google Scholar] [CrossRef]
- Fischer, D.; Madani, H. On heat pumps in smart grids: A review. Renew. Sustain. Energy Rev. 2017, 70, 342–357. [Google Scholar] [CrossRef]
- IEA; Nordic Energy Research. Nordic Energy Technology Perspectives 2016 Cities, Flexibility and Pathways to Carbon-Neutrality; Nordic Energy Research: Oslo, Norway, 2016. [Google Scholar]
- NordPoolGroup. NordPool 2018. Available online: https://www.nordpoolgroup.com/message-center-container/newsroom/exchange-message-list/2018/q2/nord-pool-key-statistics--may-2018/ (accessed on 13 June 2018).
- NordPoolGroup. NordPool-About Us 2018. Available online: https://www.nordpoolgroup.com/About-us/ (accessed on 15 October 2018).
- NordPoolGroup. NordPool Bidding Areas 2018. Available online: https://www.nordpoolgroup.com/the-power-market/Bidding-areas/ (accessed on 28 April 2018).
- Wiebe, K.S. The impact of renewable energy diffusion on European consumption-based emissions. Econ. Syst. Res. 2016, 28, 133–150. [Google Scholar] [CrossRef]
- Pan, L.; Liu, P.; Li, Z.; Wang, Y. A dynamic input–output method for energy system modeling and analysis. Chem. Eng. Res. Des. 2018, 131, 183–192. [Google Scholar] [CrossRef]
- Guevara, Z.; Domingos, T. The multi-factor energy input–output model. Energy Econ. 2017, 61, 261–269. [Google Scholar] [CrossRef]
- Palmer, G. An input–output based net-energy assessment of an electricity supply industry. Energy 2017, 141, 1504–1516. [Google Scholar] [CrossRef]
- Arteconi, A.; Patteeuw, D.; Bruninx, K.; Delarue, E.; D’haeseleer, W.; Helsen, L. Active demand response with electric heating systems: Impact of market penetration. Appl. Energy 2016, 177, 636–648. [Google Scholar] [CrossRef]
- Clauß, J.; Stinner, S.; Solli, C.; Lindberg, K.B.; Madsen, H.; Georges, L. A generic methodology to evaluate hourly average CO2eq. intensities of the electricity mix to deploy the energy flexibility potential of Norwegian buildings. In Proceedings of the 10th International Conference on System Simulation in Buildings, Liege, Belgium, 10–12 December 2018. In Proceedings of the 10th International Conference on System Simulation in Buildings, Liege, Belgium, 10–12 December 2018. [Google Scholar]
- Energinet. Retningslinjer for Miljødeklarationen for el 2017, 1–16. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiFtdmLn8DhAhXsyIsBHUtOChwQFjAAegQIAxAC&url=https%3A%2F%2Fenerginet.dk%2F-%2Fmedia%2FEnerginet%2FEl-RGD%2FRetningslinjer-for-miljdeklarationen-for-el.pdf%3Fla%3Dda&usg=AOvVaw3lFa3nFoF1MpOpXtSk5pRa (accessed on 3 February 2019).
- Milovanoff, A.; Dandres, T.; Gaudreault, C.; Cheriet, M.; Samson, R. Real-time environmental assessment of electricity use: A tool for sustainable demand-side management programs. Int. J. Life Cycle Assess. 2018, 23, 1981–1994. [Google Scholar] [CrossRef]
- Roux, C.; Schalbart, P.; Peuportier, B. Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house. J. Clean. Prod. 2016, 113, 532–540. [Google Scholar] [CrossRef]
- Tomorrow. CO2-equivalent Model Explanation 2018. Available online: https://github.com/tmrowco/electricitymap-contrib/blob/master/CO2eq Model Explanation.ipynb (accessed on 4 May 2018).
- Bettle, R.; Pout, C.H.; Hitchin, E.R. Interactions between electricity-saving measures and carbon emissions from power generation in England and Wales. Energy Policy 2006, 34, 3434–3446. [Google Scholar] [CrossRef]
- Hawkes, A.D. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy 2010, 38, 5977–5987. [Google Scholar] [CrossRef]
- Corradi, O. Estimating the Marginal Carbon Intensity of Electricity with Machine Learning 2018. Available online: https://medium.com/electricitymap/using-machine-learning-to-estimate-the-hourly-marginal-carbon-intensity-of-electricity-49eade43b421 (accessed on 28 February 2019).
- Graabak, I.; Bakken, B.H.; Feilberg, N. Zero emission building and conversion factors between electricity consumption and emissions of greenhouse gases in a long term perspective. Environ. Clim. Technol. 2014, 13, 12–19. [Google Scholar] [CrossRef]
- Askeland, M.; Jaehnert, S.; Mo, B.; Korpas, M. Demand response with shiftable volume in an equilibrium model of the power system. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017. [Google Scholar] [CrossRef]
- Quoilin, S.; Hidalgo Ganzalez, I.; Zucker, A. Modelling Future EU Power Systems Under High Shares of Renewables The Dispa-SET 2.1 Open-Source Model; Publications Office of the European Union: Luxembourg, LUXEMBOURG, 2017. [Google Scholar] [CrossRef]
- Tomorrow. Electricity Map Europe 2016. Available online: https://www.electricitymap.org/?wind=false&solar=false&page=country&countryCode=NO (accessed on 13 April 2018).
- Tranberg, B. Cost Allocation and Risk Management in Renewable Electricity Networks. PhD Dissertation, Department of Engineering, Aarhus University, Danske Commodities, Aarhus, Denmark, 2019. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.; McKinnon, A.; Perczyk, D.; Roy, J.; Schaeffer, R.; Sims, R.; Smith, P.; et al. Annex III: Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ecoinvent. 2016. Available online: www.ecoinvent.org (accessed on 9 April 2018).
- EEA. Overview of Electricity Production and Use in Europe 2018. Available online: https://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-2/assessment (accessed on 12 April 2018).
- Bachmann, C.; Roorda, M.J.; Kennedy, C. Developing a multi-scale multi-region input–output model developing a multi-scale multi-region input–output model. Econ. Syst. Res. 2015, 27, 172–193. [Google Scholar] [CrossRef]
- Kristjansdottir, T.F.; Houlihan-Wiberg, A.; Andresen, I.; Georges, L.; Heeren, N.; Good, C.S.; Brattebø, H. Is a net life cycle balance for energy and materials achievable for a zero emission single-family building in Norway? Energy Build. 2018, 168, 457–469. [Google Scholar] [CrossRef]
- Brattebø, H.; O’Born, R.; Sartori, I.; Klinski, M.; Nørstebø, B. Typologier for Norske Boligbygg—Eksempler på Tiltak for Energieffektivisering. Available online: https://brage.bibsys.no/xmlui/handle/11250/2456621 (accessed on 3 February 2019).
- Goia, F.; Finocchiaro, L.; Gustavsen, A. Passivhus Norden|Sustainable Cities and Buildings The ZEB Living Laboratory at the Norwegian University of Science and Technology: A Zero Emission House for Engineering and Social science Experiments. In Proceedings of the 7th Nordic Passive House Conference, Copenhagen, Denmark, 20–21 August 2015. [Google Scholar]
- Halvgaard, R.; Poulsen, N.; Madsen, H.; Jørgensen, J. Economic model predictive control for building climate control in a smart grid. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Madsen, H.; Parvizi, J.; Halvgaard, R.; Sokoler, L.E.; Jørgensen, J.B.; Hansen, L.H.; Hilger, K.B. Control of Electricity Loads in Future Electric Energy Systems. In Handbook of Clean Energy Systems; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Johnsen, T.; Taksdal, K.; Clauß, J.; Georges, L. Influence of thermal zoning and electric radiator control on the energy flexibility potential of Norwegian detached houses. In Proceedings of the CLIMA 2019, Bucharest, Romania, 26–29 May 2019. [Google Scholar]
- EQUA. EQUA Simulation AB 2015. Available online: http://www.equa.se/en/ida-ice (accessed on 16 October 2015).
- EQUA Simulation AB; EQUA Simulation Finland Oy. Validation of IDA Indoor Climate and Energy 4.0 with Respect to CEN Standards EN 15255-2007 and EN 15265-2007; EQUA Simulation Technology Group: Solna, Sweden, 2010. [Google Scholar]
- EQUA Simulation AB. Validation of IDA Indoor Climate and Energy 4.0 build 4 with Respect to ANSI/ASHRAE Standard 140-2004; EQUA Simulation Technology Group: Solna, Sweden, 2010. [Google Scholar]
- Achermann, M.; Zweifel, G. RADTEST—Radiant Heating and Cooling Test Cases Supporting Documents; HTA Luzern: Luzern, Switzerland, 2003. [Google Scholar]
- Bring, A.; Sahlin, P.; Vuolle, M. Models for Building Indoor Climate and Energy Simulation Models for Building Indoor Climate and Energy Simulation 1. Executive Background and Summary; Department of Building Sciences, KTH: Stockholm, Sweden, 1999. [Google Scholar]
- Sahlin, P. Modelling and Simulation Methods for Modular Continuous Systems in Buildings; Royal Institute of Technology: Stockholm, Sweden, 1996. [Google Scholar]
- Kipping, A.; Trømborg, E. Hourly electricity consumption in Norwegian households—Assessing the impacts of different heating systems. Energy 2015, 93, 655–671. [Google Scholar] [CrossRef]
- Fischer, D.; Lindberg, K.B.; Madani, H.; Wittwer, C. Impact of PV and variable prices on optimal system sizing for heat pumps and thermal storage. Energy Build. 2017, 128, 723–733. [Google Scholar] [CrossRef]
- SN/TS3031:2016. Bygningers Energiytelse, Beregning av Energibehov og Energiforsyning; Standard Norge: Oslo, Norway, 2016. [Google Scholar]
- Ahmed, K.; Akhondzada, A.; Kurnitski, J.; Olesen, B. Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards. Sustain. Cities Soc. 2017, 35, 134–144. [Google Scholar] [CrossRef]
- ISO17772-1. Energy Performance of Buildings—Indoor Environmental Quality—Part1: Indoor Environmental Input Parameters for the Design and Assessment of Energy Performance of Buildings; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- OpenStreetMap. Shiny Weather Data 2017. Available online: https://rokka.shinyapps.io/shinyweatherdata/ (accessed on 20 May 2017).
- NordPoolGroup. NordPool Historical Market Data. Available online: https://www.nordpoolgroup.com/historical-market-data/ (accessed on 16 April 2018).
- Standard Norge. NS-EN 15251:2007 Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; Standard Norge: Oslo, Norway, 2007. [Google Scholar]
De-Coupled Approach | Coupled Approach | ||
---|---|---|---|
Average | Marginal | Average | Marginal |
Energinet [40] (CO2) Vandermeulen et al. [9] (CO2) Milovanoff et al. [41] (CO2) Roux et al. [42] (CO2) Tomorrow [43] (CO2) | Bettle et al. [44] (CO2) Hawkes [45] (CO2) Peán et al. (based on Hawkes) [25] (CO2) Corradi [46] (CO2) | Graabak [47] (CO2) | Patteeuw et al. [26] (EL) Arteconi et al. (based on Patteeuw) [38] (EL) Graabak et al. [47] (CO2, EL) Askeland et al. [48] (EL) Quoilin et al. [49] (EL) |
BZ | NO1 | NO2 | NO3 | NO4 | NO5 | SE1 | SE4 | DK1 | FIN |
---|---|---|---|---|---|---|---|---|---|
Average CO2eq. intensity (gCO2eq./kWh) | 15 | 17 | 11 | 9 | 20 | 21 | 114 | 316 | 227 |
Average CO2eq. intensity without imports (gCO2eq./kWh) | 7 | 8 | 8 | 7 | 20 | 21 | 259 | 461 | 241 |
Building Envelope | Thermal Bridges | Infiltration | Windows | AHU | HDS | SH Needs | ||||
---|---|---|---|---|---|---|---|---|---|---|
Symbol | UEW | UIW | URoof | UFloor | UTotal | ηHR | ER | |||
Unit | W/(m2·K) | W/(m2·K) | n50 | W/(m2·K) | % | W/m2 | kWh/m2 | |||
0.35 | 0.34 | 0.23 | 0.30 | 0.05 | 3.0 | 2.1 | 0 | 93 | 172 |
Thresholds Kept Constant | Adjusted Thresholds for Similar Segments | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NO2 | NO3 | SE1 | SE4 | DK1 | FIN | NO2 | NO3 | SE1 | SE4 | DK1 | FIN | |
CSC-a | ||||||||||||
LCT [%] | 30 | 30 | 30 | 30 | 30 | 30 | 22 | 30 | 27 | 29.5 | 47 | 46 |
HCT [%] | 70 | 70 | 70 | 70 | 70 | 70 | 68.5 | 70 | 66 | 68.5 | 81.5 | 82 |
LTSP [h] | 1812 | 1886 | 1706 | 1814 | 2584 | 2439 | 1879 | 1886 | 1884 | 1878 | 1882 | 1881 |
RTSP [h] | 1822 | 2219 | 2166 | 2236 | 2731 | 2930 | 2229 | 2219 | 2223 | 2223 | 2230 | 2245 |
HTSP [h] | 5126 | 4655 | 4888 | 4710 | 3445 | 3391 | 4652 | 4655 | 4653 | 4659 | 4648 | 4634 |
CSC-b | ||||||||||||
LCT [%] | 30 | 30 | 30 | 30 | 30 | 30 | 22 | 30 | 27 | 29.5 | 21 | 16 |
HCT [%] | 70 | 70 | 70 | 70 | 70 | 70 | 67 | 70 | 67.5 | 70 | 76 | 59 |
LTSP [h] | 2624 | 2924 | 2758 | 2892 | 3954 | 3881 | 2912 | 2924 | 2925 | 2918 | 2933 | 2904 |
RTSP [h] | 5125 | 4654 | 4487 | 4710 | 3445 | 3390 | 4651 | 4654 | 4652 | 4659 | 4648 | 4673 |
HTSP [h] | 1011 | 1182 | 1115 | 1158 | 1361 | 1489 | 1191 | 1182 | 1183 | 1183 | 1179 | 1183 |
CSC-a | CSC-b | CSP-a | CSP-b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EUse | Em. | Costs | EUse | Em. | Costs | EUse | Em. | Costs | EUse | Em. | Costs | |
% | % | % | % | % | % | % | % | % | % | % | % | |
NO2 | +9 | −8 | +10 | +3 | -1 | +2 | +7 | +21 | +2 | +4 | +9 | +1 |
NO3 | +9 | +3 | +10 | +3 | +2 | +2 | +7 | +13 | +2 | +4 | +6 | +1 |
SE1 | +9 | +0 | +11 | +3 | +1 | +2 | +7 | +14 | +1 | +4 | +8 | +1 |
SE4 | +9 | +0 | +10 | +3 | +1 | +1 | +7 | +11 | −3 | +4 | +6 | −1 |
DK1 | +10 | +1 | +2 | +3 | +2 | +1 | +7 | +1 | −6 | +4 | +2 | −1 |
FIN | +9 | +5 | +6 | +3 | +2 | +1 | +8 | +8 | −9 | +4 | +3 | −3 |
Emissions | Costs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CSC-a | CSC-b | CSP-a | CSP-b | |||||||||
Total | DHW | SH | Total | DHW | SH | Total | DHW | SH | Total | DHW | SH | |
NO2 | −8 | −17 | −6 | −1 | +17 | −3 | +2 | −5 | +3 | +1 | −5 | +2 |
NO3 | +3 | −3 | +3 | +2 | +14 | +0 | +2 | −7 | +3 | +1 | −5 | +2 |
SE1 | +0 | −3 | +1 | +1 | +20 | −1 | +1 | −9 | +2 | +1 | −7 | +2 |
SE4 | +0 | −7 | +0 | +1 | +16 | −1 | −3 | −20 | +1 | −1 | −13 | +2 |
DK1 | +1 | −12 | +3 | +2 | −1 | +2 | −6 | −27 | −1 | −1 | −15 | +2 |
FIN | +5 | +0 | +6 | +2 | +6 | +2 | −9 | −32 | −3 | −3 | −21 | +1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clauß, J.; Stinner, S.; Solli, C.; Lindberg, K.B.; Madsen, H.; Georges, L. Evaluation Method for the Hourly Average CO2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating. Energies 2019, 12, 1345. https://doi.org/10.3390/en12071345
Clauß J, Stinner S, Solli C, Lindberg KB, Madsen H, Georges L. Evaluation Method for the Hourly Average CO2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating. Energies. 2019; 12(7):1345. https://doi.org/10.3390/en12071345
Chicago/Turabian StyleClauß, John, Sebastian Stinner, Christian Solli, Karen Byskov Lindberg, Henrik Madsen, and Laurent Georges. 2019. "Evaluation Method for the Hourly Average CO2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating" Energies 12, no. 7: 1345. https://doi.org/10.3390/en12071345
APA StyleClauß, J., Stinner, S., Solli, C., Lindberg, K. B., Madsen, H., & Georges, L. (2019). Evaluation Method for the Hourly Average CO2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating. Energies, 12(7), 1345. https://doi.org/10.3390/en12071345